Logos: Heart Foundation, and Cardiac Society of Australia and New Zealand
ACS guideline About the guideline Resources Download guideline PDFs

Australian clinical guideline for diagnosing and managing acute coronary syndromes 2025

Hexagonal medical-themed design on a light blue background, featuring icons of a heart, stethoscope, hospital, and medicine

1

[1] Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138:e618–51.

[2] Tamis-Holland JE, Jneid H, Reynolds HR, Agewall S, Brilakis ES, Brown TM, et al. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease: a scientific statement from the American Heart Association. Circulation. 2019;139:e891–908

[3] Australian Commission on Safety and Quality in Health Care. Partnering with Consumers Standard. Available at www.safetyandquality.gov.au/standards/nsqhs-standards/partnering-consumers-standard [accessed 21 November 2022].

[4] Elwyn G, Frosch D, Thomson R, Joseph-Williams N, Lloyd A, Kinnersley P, et al. Shared decision making: a model for clinical practice. J Gen Intern Med. 2012;27:1361–7.

[5] Lin GA, Fagerlin A. Shared decision making: state of the science. Circ Cardiovasc Qual Outcomes. 2014;7:328–34.

[6] Dennison Himmelfarb CR, Koirala B, Coke LA. Shared decision making: partnering with patients to improve cardiovascular care and outcomes. J Cardiovasc Nurs. 2018;33:301–3.

[7] Klein LW, Anderson HV, Cigarroa J. Shared decision-making in cardiovascular practice. Cardiol Rev. 2023;31:52–6.

[8] Mitropoulou P, Grüner-Hegge N, Reinhold J, Papadopoulou C. Shared decision making in cardiology: a systematic review and meta-analysis. Heart. 2022;109:34–9.

[9] Turkson-Ocran RN, Ogunwole SM, Hines AL, Peterson PN. Shared decision making in cardiovascular patient care to address cardiovascular disease disparities. J Am Heart Assoc. 2021;10:e018183.

[10] Lauck S, Lewis K. Shared decision-making in cardiac care: can we close the gap between good intentions and improved outcomes? Heart. 2022;109:4–5.

[11] de Lemos JA, Newby LK, Mills NL. A proposal for modest revision of the definition of type 1 and type 2 myocardial infarction. Circulation. 2019;140:1773-5.

[12] Australian Institute of Health and Welfare. Heart, Stroke and vascular disease: Australian facts. Available at www.aihw.gov.au/reports/heart-stroke-vascular-diseases/hsvd-facts [accessed 16 August 2024].

[13] The National Heart Foundation of Australia. Acute coronary syndromes (ACS) clinical guidelines. Available at www.heartfoundation.org.au/for-professionals/fp-acs-guidelines [accessed 9 January 2025].

[14] Stehli J, Martin C, Brennan A, Dinh DT, Lefkovits J, Zaman S. Sex differences persist in time to presentation, revascularization, and mortality in myocardial infarction treated with percutaneous coronary intervention. J Am Heart Assoc. 2019;8:e012161.

[15] Khan E, Brieger D, Amerena J, Atherton JJ, Chew DP, Farshid A, et al. Differences in management and outcomes for men and women with ST-elevation myocardial infarction. Med J Aust. 2018;209:118–23.

[16] Stehli J, Dinh D, Dagan M, Duffy SJ, Brennan A, Smith K, et al. Sex differences in prehospital delays in patients with ST‐segment–elevation myocardial infarction undergoing percutaneous coronary intervention. J Am Heart Assoc. 2021;10:e019938.

[17] Australian Institute of Health and Welfare. Better cardiac care measures for Aboriginal and Torres Strait Islander people: fifth national report 2020. Available at www.aihw.gov.au/reports/indigenous-australians/better-cardiac-care-measures-for-indigenous-people/summary [accessed 26 August 2022].

[18] Australian Institute of Health and Welfare. Estimating the incidence of stroke and acute coronary syndrome using the National Integrated Health Services Information Analysis Asset. Available at www.aihw.gov.au/reports/heart-stroke-vascular-diseases/incidence-of-stroke-acute-coronary-syndrome/contents/technical-report [accessed 20 December 2024].

[19] Australian Institute of Health and Welfare. Cultural competency in the delivery of health services for Indigenous people. Available at www.aihw.gov.au/reports/indigenous-australians/cultural-competency-in-the-delivery-of-health-serv/summary [accessed 11 November 2024].

[20] Thompson SC, Nedkoff L, Katzenellenbogen J, Hussain MA, Sanfilippo F. Challenges in managing acute cardiovascular diseases and follow-up care in rural areas: a narrative review. Int J Environ Res Public Health. 2019;16:1–17.

[21] Chew DP, French J, Briffa TG, Hammett CJ, Ellis CJ, Ranasinghe I, et al. Acute coronary syndrome care across Australia and New Zealand: the SNAPSHOT ACS study. Med J Aust. 2013;199:185–91.

[22] Chew DP, Scott IA, Cullen L, French JK, Briffa TG, Tideman PA, et al. National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand: Australian clinical guidelines for the management of acute coronary syndromes 2016. Med J Aust. 2016;205:128–33.

[23] Cullen L, Greenslade J, Merollini K, Graves N, Hammett CJK, Hawkins T, et al. Cost and outcomes of assessing patients with chest pain in an Australian emergency department. Med J Aust. 2015;202:427–32.

[24] Chapman AR, Lee KK, McAllister DA, Cullen L, Greenslade JH, Parsonage W, et al. Association of high-sensitivity cardiac troponin I concentration with cardiac outcomes in patients with suspected acute coronary syndrome. JAMA. 2017;318:1913–24.

[25] Sörensen NA, Neumann JT, Ojeda F, Schäfer S, Magnussen C, Keller T, et al. Relations of sex to diagnosis and outcomes in acute coronary syndrome. J Am Heart Assoc. 2018;7:e007297.

[26] Twerenbold R, Badertscher P, Boeddinghaus J, Nestelberger T, Wildi K, Puelacher C, et al. 0/1-Hour triage algorithm for myocardial infarction in patients with renal dysfunction. Circulation. 2018;137:436–51.

[27] Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2021;70:e187–285.

[28] Fanaroff AC, Rymer JA, Goldstein SA, Simel DL, Newby LK. Does this patient with chest pain have acute coronary syndrome? The rational clinical examination systematic review. JAMA. 2015;314:1955–65.

[29] Hsia RY, Hale Z, Tabas JA. A national study of the prevalence of life-threatening diagnoses in patients with chest pain. JAMA Intern Med. 2016;176:1029–32.

[30] van der Meer MG, Backus BE, van der Graaf Y, Cramer MJ, Appelman Y, Doevendans PA, et al. The diagnostic value of clinical symptoms in women and men presenting with chest pain at the emergency department, a prospective cohort study. PLoS One. 2015;10:e0116431.

[31] Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267–315.

[32] Rubini Gimenez M, Reiter M, Twerenbold R, Reichlin T, Wildi K, Haaf P, et al. Sex-specific chest pain characteristics in the early diagnosis of acute myocardial infarction. JAMA Intern Med. 2014;174:241–9.

[33] National Institute for Health and Care Excellence. Guideline scope: acute coronary syndromes (unstable angina, NSTEMI, STEMI): management and secondary prevention (update). Available at www.nice.org.uk/guidance/ng185/documents/final-scope [accessed 6 January 2025].

[34] Department of Health and Aged Care. Australian Guideline for assessing and managing cardiovascular disease risk. 2023.

[35] Adlam D, Alfonso F, Maas A, Vrints C, Writing C. European Society of Cardiology, acute cardiovascular care association, SCAD study group: a position paper on spontaneous coronary artery dissection. Eur Heart J. 2018;39:3353–68.

[36] Raphael CE, Heit JA, Reeder GS, Bois MC, Maleszewski JJ, Tilbury RT, et al. Coronary embolus: an underappreciated cause of acute coronary syndromes. JACC: Cardiovasc Imaging. 2018;11:172–80.

[37] Talarico GP, Crosta ML, Giannico MB, Summaria F, Calò L, Patrizi R. Cocaine and coronary artery diseases: a systematic review of the literature. J Cardiovasc Med. 2017;18:291–4.

[38] Kevil CG, Goeders NE, Woolard MD, Bhuiyan MS, Dominic P, Kolluru GK, et al. Methamphetamine use and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2019;39:1739–46.

[39] Shimokawa H, Suda A, Takahashi J, Berry C, Camici PG, Crea F, et al. Clinical characteristics and prognosis of patients with microvascular angina: an international and prospective cohort study by the Coronary Vasomotor Disorders International Study (COVADIS) Group. Eur Heart J. 2021;42:4592–600.

[40] Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35:1101–11.

[41] Lichtman JH, Leifheit EC, Safdar B, Bao H, Krumholz HM, Lorenze NP, et al. Sex differences in the presentation and perception of symptoms among young patients with myocardial infarction. Circulation. 2018;137:781–90.

[42] Khan NA, Daskalopoulou SS, Karp I, Eisenberg MJ, Pelletier R, Tsadok MA, et al. Sex differences in prodromal symptoms in acute coronary syndrome in patients aged 55 years or younger. Heart. 2017;103:863.

[43] Ferry AV, Anand A, Strachan FE, Mooney L, Stewart SD, Marshall L, et al. Presenting symptoms in men and women diagnosed with myocardial infarction using sex‐specific criteria. J Am Heart Assoc. 2019;8:e012307.

[44] Hemal K, Pagidipati NJ, Coles A, Dolor RJ, Mark DB, Pellikka PA, et al. Sex differences in demographics, risk factors, presentation, and noninvasive testing in stable outpatients with suspected coronary artery disease: insights from the PROMISE Trial. JACC: Cardiovasc Imaging. 2016;9:337–46.

[45] Pelletier R, Khan NA, Cox J, Daskalopoulou SS, Eisenberg MJ, Bacon SL, et al. Sex versus gender-related characteristics: which predicts outcome after acute coronary syndrome in the young? J Am Coll Cardiol. 2016;67:127–35.

[46] Chiaramonte GR, Friend R. Medical students' and residents' gender bias in the diagnosis, treatment, and interpretation of coronary heart disease symptoms. Health Psychol. 2006;25:255–66.

[47] Jokhadar M, Wenger NK. Review of the treatment of acute coronary syndrome in elderly patients. Clin Interv Aging. 2009;4:435–44.

[48] Gupta R, Munoz R. Evaluation and management of chest pain in the elderly. Emerg Med Clin North Am. 2016;34:523–42.

[49] Lowenstern A, Alexander KP, Hill CL, Alhanti B, Pellikka PA, Nanna MG, et al. Age-related differences in the noninvasive evaluation for possible coronary artery disease: insights from the Prospective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE) Trial. JAMA Cardiol. 2020;5:193–201.

50

[50] Nanna MG, Hajduk AM, Krumholz HM, Murphy TE, Dreyer RP, Alexander KP, et al. Sex-based differences in presentation, treatment, and complications among older adults hospitalized for acute myocardial infarction: the SILVER-AMI Study. Circ Cardiovasc Qual Outcomes. 2019;12:e005691.

[51] Damluji AA, Forman DE, Wang TY, Chikwe J, Kunadian V, Rich MW, et al. Management of acute coronary syndrome in the older adult population: a scientific statement from the American Heart Association. Circulation. 2023;147:e32–62.

[52] Ilton MK, Walsh WF, Brown ADH, Tideman PA, Zeitz CJ, Wilson J. A framework for overcoming disparities in management of acute coronary syndromes in the Australian Aboriginal and Torres Strait Islander population. A consensus statement from the National Heart Foundation of Australia. Med J Aust. 2014;200:639–43.

[53] Stephensen L, Greenslade J, Starmer K, Starmer G, Stone R, Bonnin R, et al. Clinical characteristics of Aboriginal and Torres Strait Islander emergency department patients with suspected acute coronary syndrome. Emerg Med Australas. 2023;35:442–9.

[54] Diercks DB, Peacock WF, Hiestand BC, Chen AY, Pollack CV, Jr., Kirk JD, et al. Frequency and consequences of recording an electrocardiogram >10 minutes after arrival in an emergency room in non-ST-segment elevation acute coronary syndromes (from the CRUSADE Initiative). Am J Cardiol. 2006;97:437–42.

[55] Dee F, Savage L, Leitch JW, Collins N, Loten C, Fletcher P, et al. Management of acute coronary syndromes in patients in rural Australia: The MORACS randomized clinical trial. JAMA Cardiol. 2022;7:690–8.

[56] Scirica BM, Morrow DA, Budaj A, Dalby AJ, Mohanavelu S, Qin J, et al. Ischemia detected on continuous electrocardiography after acute coronary syndrome: observations from the MERLIN-TIMI 36 (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome-Thrombolysis In Myocardial Infarction 36) trial. J Am Coll Cardiol. 2009;53:1411–21.

[57] Ryan TJ, Anderson JL, Antman EM, Braniff BA, Brooks NH, Califf RM, et al. ACC/AHA guidelines for the management of patients with acute myocardial infarction: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). Circulation. 1996;94:2341–50.

[58] Barbagelata A, Ware DL. Denying reperfusion or falsely declaring emergency: the dilemma posed by ST-segment elevation. J Electrocardiol. 2006;39:S73–4.

[59] Tzimas G, Antiochos P, Monney P, Eeckhout E, Meier D, Fournier S, et al. Atypical electrocardiographic presentations in need of primary percutaneous coronary intervention. Am J Cardiol. 2019;124:1305–14.

[60] Pendell Meyers H, Bracey A, Lee D, Lichtenheld A, Li WJ, Singer DD, et al. Accuracy of OMI ECG findings versus STEMI criteria for diagnosis of acute coronary occlusion myocardial infarction. Int J Cardiol Heart Vasc. 2021;33:100767.

[61] Miranda DF, Lobo AS, Walsh B, Sandoval Y, Smith SW. New insights into the use of the 12-lead electrocardiogram for diagnosing acute myocardial infarction in the emergency department. Can J Cardiol. 2018;34:132–45.

[62] Warren J, Mehran R, Yu J, Xu K, Bertrand ME, Cox DA, et al. Incidence and impact of totally occluded culprit coronary arteries in patients presenting with non-ST-segment elevation myocardial infarction. Am J Cardiol. 2015;115:428–33.

[63] Smith SW, Dodd KW, Henry TD, Dvorak DM, Pearce LA. Diagnosis of ST-elevation myocardial infarction in the presence of left bundle branch block with the ST-elevation to S-wave ratio in a modified Sgarbossa rule. Ann Emerg Med. 2012;60:766–76.

[64] Cai Q, Mehta N, Sgarbossa EB, Pinski SL, Wagner GS, Califf RM, et al. The left bundle-branch block puzzle in the 2013 ST-elevation myocardial infarction guideline: from falsely declaring emergency to denying reperfusion in a high-risk population. Are the Sgarbossa Criteria ready for prime time? Am Heart J. 2013;166:409–13.

[65] Sgarbossa EB, Pinski SL, Barbagelata A, Underwood DA, Gates KB, Topol EJ, et al. Electrocardiographic diagnosis of evolving acute myocardial infarction in the presence of left bundle-branch block. GUSTO-1 (Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries) Investigators. N Engl J Med. 1996;334:481–7.

[66] de Zwaan C, Bär FW, Wellens HJ. Characteristic electrocardiographic pattern indicating a critical stenosis high in left anterior descending coronary artery in patients admitted because of impending myocardial infarction. Am Heart J. 1982;103:730–6.

[67] Knotts RJ, Wilson JM, Kim E, Huang HD, Birnbaum Y. Diffuse ST depression with ST elevation in aVR: Is this pattern specific for global ischemia due to left main coronary artery disease? J Electrocardiol. 2013;46:240–8.

[68] Wong CK, Gao W, Stewart RA, Benatar J, French JK, Aylward PE, et al. aVR ST elevation: an important but neglected sign in ST elevation acute myocardial infarction. Eur Heart J. 2010;31:1845–53.

[69] Koechlin L, Strebel I, Zimmermann T, Nestelberger T, Walter J, Lopez-Ayala P, et al. Hyperacute T wave in the early diagnosis of acute myocardial infarction. Ann Emerg Med. 2023;82:194–202.

[70] Smith SW, Meyers HP. Hyperacute T-waves can be a useful sign of occlusion myocardial infarction if appropriately defined. Ann Emerg Med. 2023;82:203–6.

[71] Kaul P, Fu Y, Chang WC, Harrington RA, Wagner GS, Goodman SG, et al. Prognostic value of ST segment depression in acute coronary syndromes: insights from PARAGON-A applied to GUSTO-IIb. PARAGON-A and GUSTO IIb Investigators. Platelet IIb/IIIa Antagonism for the Reduction of Acute Global Organization Network. J Am Coll Cardiol. 2001;38:64–71.

[72] Savonitto S, Cohen MG, Politi A, Hudson MP, Kong DF, Huang Y, et al. Extent of ST-segment depression and cardiac events in non-ST-segment elevation acute coronary syndromes. Eur Heart J. 2005;26:2106–13.

[73] Gifft K, Ghadban R, Assefa N, Luebbering Z, Allaham H, Enezate T. The accuracy of distribution of non-ST elevation electrocardiographic changes in localising the culprit vessel in non-ST elevation myocardial infarction. Arch Med Sci Atheroscler Dis. 2020;5:e226–9.

[74] Morris N, Reynard C, Body R. The low accuracy of the non-ST-elevation myocardial infarction electrocardiograph criteria of the fourth universal definition of myocardial infarction. Hong Kong J Emerg Med. 2020;27:229–35.

[75] Somers MP, Brady WJ, Perron AD, Mattu A. The prominent T wave: electrocardiographic differential diagnosis. Am J Med. 2002;20:243–51.

[76] Schläpfer J, Wellens HJ. Computer-interpreted electrocardiograms: benefits and limitations. J Am Coll Cardiol. 2017;70:1183–92.

[77] Wang Z, Stavrakis S, Yao B. Hierarchical deep learning with Generative Adversarial Network for automatic cardiac diagnosis from ECG signals. Comput Biol Med. 2023;155:106641.

[78] Thygesen K, Mair J, Giannitsis E, Mueller C, Lindahl B, Blankenberg S, et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J. 2012;33:2252–7.

[79] Vylegzhanina AV, Kogan AE, Katrukha IA, Koshkina EV, Bereznikova AV, Filatov VL, et al. Full-size and partially truncated cardiac troponin complexes in the blood of patients with acute myocardial infarction. Clin Chem. 2019;65:882–92.

[80] Katrukha IA, Katrukha AG. Myocardial injury and the release of troponins I and T in the blood of patients. Clin Chem. 2021;67:124–30.

[81] Zhelev Z, Hyde C, Youngman E, Rogers M, Fleming S, Slade T, et al. Diagnostic accuracy of single baseline measurement of Elecsys Troponin T high-sensitive assay for diagnosis of acute myocardial infarction in emergency department: systematic review and meta-analysis. BMJ. 2015;350:h15.

[82] Pickering JW, Than MP, Cullen L, Aldous S, Ter Avest E, Body R, et al. Rapid rule-out of acute myocardial infarction with a single high-sensitivity cardiac troponin T measurement below the limit of detection: a collaborative meta-analysis. Ann Intern Med. 2017;166:715–24.

[83] Neumann JT, Sörensen NA, Rübsamen N, Ojeda F, Schock A, Seddighizadeh P, et al. Evaluation of a new ultra-sensitivity troponin I assay in patients with suspected myocardial infarction. Int J Cardiol. 2019;283:35–40.

[84] Aw T-C, Phua S-K, Tan S-P. Measurement of cardiac troponin I in serum with a new high-sensitivity assay in a large multi-ethnic Asian cohort and the impact of gender. Clin Chim Acta. 2013;422:26–8.

[85] Sandoval Y, Smith SW, Schulz KM, Murakami MM, Love SA, Nicholson J, et al. Diagnosis of type 1 and type 2 myocardial infarction using a high-sensitivity cardiac troponin i assay with sex-specific 99th percentiles based on the third universal definition of myocardial infarction classification system. Clin Chem. 2015;61:657–63.

[86] Shah AS, Griffiths M, Lee KK, McAllister DA, Hunter AL, Ferry AV, et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ. 2015;350:g7873.

[87] Pickering JW, Young JM, George PM, Watson AS, Aldous SJ, Troughton RW, et al. Validity of a novel point-of-care troponin assay for single-test rule-out of acute myocardial infarction. JAMA Cardiol. 2018;3:1108–12.

[88] Sörensen NA, Neumann JT, Ojeda F, Giannitsis E, Spanuth E, Blankenberg S, et al. Diagnostic evaluation of a high-sensitivity troponin I point-of-care assay. Clin Chem. 2019;65:1592–601.

[89] Boeddinghaus J, Nestelberger T, Koechlin L, Wussler D, Lopez-Ayala P, Walter JE, et al. Early diagnosis of myocardial infarction with point-of-care high-sensitivity cardiac troponin I. J Am Coll Cardiol. 2020;75:1111–24.

[90] Apple FS, Smith SW, Greenslade JH, Sandoval Y, Parsonage W, Ranasinghe I, et al. Single high-sensitivity point-of-care whole-blood cardiac troponin I measurement to rule out acute myocardial infarction at low risk. Circulation. 2022;146:1918–29.

[91] Aakre KM, Saenger AK, Body R, Collinson P, Hammarsten O, Jaffe AS, et al. Analytical considerations in deriving 99th percentile upper reference limits for high-sensitivity cardiac troponin assays: Educational recommendations from the IFCC Committee on Clinical Application of Cardiac Bio-Markers. Clin Chem. 2022;68:1022–30.

[92] Lee KK, Ferry AV, Anand A, Strachan FE, Chapman AR, Kimenai DM, et al. Sex-specific thresholds of high-sensitivity troponin in patients with suspected acute coronary syndrome. J Am Coll Cardiol. 2019;74:2032–43.

[93] Greene DN, Schmidt RL, Christenson RH, Rongitsch J, Imborek KL, Rebuck H, et al. Distribution of high-sensitivity cardiac troponin and N-terminal pro-brain natriuretic peptide in healthy transgender people. JAMA Cardiol. 2022;7:1170–4.

[94] Welsh P, Preiss D, Hayward C, Shah ASV, McAllister D, Briggs A, et al. Cardiac troponin T and troponin I in the general population. Circulation. 2019;139:2754–64.

[95] Hickman PE, Abhayaratna WP, Potter JM, Koerbin G. Age-related differences in hs-cTnI concentration in healthy adults. Clin Biochem. 2019;69:26–9.

[96] Welsh P, Preiss D, Shah ASV, McAllister D, Briggs A, Boachie C, et al. Comparison between high-sensitivity cardiac troponin T and cardiac troponin I in a large general population cohort. Clin Chem. 2018;64:1607–16.

[97] Collinson P, Aakre KM, Saenger A, Body R, Hammarsten O, Jaffe AS, et al. Cardiac troponin measurement at the point of care: educational recommendations on analytical and clinical aspects by the IFCC Committee on Clinical Applications of Cardiac Bio-Markers (IFCC C-CB). Clin Chem Lab Med. 2023;61:989–98.

[98] Cullen L, Greenslade J, Parsonage W, Stephensen L, Smith SW, Sandoval Y, et al. Point-of-care high-sensitivity cardiac troponin in suspected acute myocardial infarction assessed at baseline and 2 h. Eur Heart J. 2024;45:2508–15.

[99] Januzzi JL, Mahler SA, Christenson RH, Rymer J, Newby LK, Body R, et al. Recommendations for institutions transitioning to high-sensitivity troponin testing. J Am Coll Cardiol. 2019;73:1059–77.

100

[100] Rafiudeen R, Barlis P, White HD, Gaal Wv. Type 2 MI and myocardial injury in the era of high-sensitivity troponin. Eur Cardiol. 2022;17:e03.

[101] Sandoval Y, Apple FS, Smith SW. High-sensitivity cardiac troponin assays and unstable angina. Eur Heart J Acute Cardiovasc Care. 2018;7:120–8.

[102] Karády J, Mayrhofer T, Ferencik M, Nagurney JT, Udelson JE, Kammerlander AA, et al. Discordance of high-sensitivity troponin assays in patients with suspected acute coronary syndromes. J Am Coll Cardiol. 2021;77:1487–99.

[103] Rubini Gimenez M, Twerenbold R, Reichlin T, Wildi K, Haaf P, Schaefer M, et al. Direct comparison of high-sensitivity-cardiac troponin I vs. T for the early diagnosis of acute myocardial infarction. Eur Heart J. 2014;35:2303–11.

[104] Wens SC, Schaaf GJ, Michels M, Kruijshaar ME, van Gestel TJ, In 't Groen S, et al. Elevated plasma cardiac troponin T levels caused by skeletal muscle damage in Pompe disease. Circ Cardiovasc Genet. 2016;9:6–13.

[105] Schmid J, Liesinger L, Birner-Gruenberger R, Stojakovic T, Scharnagl H, Dieplinger B, et al. Elevated cardiac troponin T in patients with skeletal myopathies. J Am Coll Cardiol. 2018;71:1540–9.

[106] Stavroulakis GA, George KP. Exercise-induced release of troponin. Clin Cardiol. 2020;43:872–81.

[107] Aakre KM, Omland T. Physical activity, exercise and cardiac troponins: clinical implications. Prog Cardiovasc Dis. 2019;62:108–15.

[108] O'Lone E, Apple FS, Burton JO, Caskey FJ, Craig JC, deFilippi CR, et al. Defining myocardial infarction in trials of people receiving hemodialysis: consensus report from the SONG-HD MI Expert Working group. Kidney Int. 2023;103:1028–37.

[109] Ammann P, Pfisterer M, Fehr T, Rickli H. Raised cardiac troponins. BMJ. 2004;328:1028–9.

[110] Mair J, Lindahl B, Müller C, Giannitsis E, Huber K, Möckel M, et al. What to do when you question cardiac troponin values. Eur Heart J Acute Cardiovasc Care. 2018;7:577–86.

[111] Bohner J, von Pape KW, Hannes W, Stegmann T. False-negative immunoassay results for cardiac troponin I probably due to circulating troponin I autoantibodies. Clin Chem. 1996;42:2046.

[112] Jaffe AS, Lindahl B, Giannitsis E, Mueller C, Cullen L, Hammarsten O, et al. ESC study group on cardiac biomarkers of the Association for Acute CardioVascular Care: A fond farewell at the retirement of CKMB. Eur Heart J. 2021;42:2260–4.

[113] Brownlee E, Greenslade JH, Kelly AM, Meek RA, Parsonage WA, Cullen L. Snapshot of suspected acute coronary syndrome assessment processes in the emergency department: a national cross-sectional survey. Emerg Med Australas. 2023;35:261–8.

[114] Weinstock MB, Weingart S, Orth F, VanFossen D, Kaide C, Anderson J, et al. Risk for clinically relevant adverse cardiac events in patients with chest pain at hospital admission. JAMA Intern Med. 2015;175:1207–12.

[115] Mahmoud O, Mahmaljy H, Elias H, Campoverde EH, Youniss M, Stanton M, et al. A comparative 30-day outcome analysis of inpatient evaluation vs outpatient testing in patients presenting with chest pain in the high-sensitivity troponin era. A propensity score matched case-control retrospective study. Clin Cardiol. 2020;43:1248–54.

[116] Kwok CS, Bennett S, Azam Z, Welsh V, Potluri R, Loke YK, et al. Misdiagnosis of acute myocardial infarction: a systematic review of the literature. Critical Pathw Cardiol. 2021;20:155–62.

[117] Than M, Flaws D, Sanders S, Doust J, Glasziou P, Kline J, et al. Development and validation of the Emergency Department Assessment of Chest pain Score and 2 h accelerated diagnostic protocol. Emerg Med Australas. 2014;26:34–44.

[118] Collet JP, Thiele H, Barbato E, Barthelemy O, Bauersachs J, Bhatt DL, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42:1289–367.

[119] Twerenbold R, Neumann JT, Sörensen NA, Ojeda F, Karakas M, Boeddinghaus J, et al. Prospective validation of the 0/1-h algorithm for early diagnosis of myocardial infarction. J Am Coll Cardiol. 2018;72:620–32.

[120] Mueller C, Giannitsis E, Christ M, Ordóñez-Llanos J, deFilippi C, McCord J, et al. Multicenter evaluation of a 0-hour/1-hour algorithm in the diagnosis of myocardial infarction with high-sensitivity cardiac troponin T. Ann Emerg Med. 2016;68:76–87.

[121] Peacock WF, Christenson R, Diercks DB, Fromm C, Headden GF, Hogan CJ, et al. Myocardial infarction can be safely excluded by high-sensitivity troponin I resting 3 hours after emergency department presentation. Acad Emerg Med. 2020;27:671–80.

[122] Taggart C, Wereski R, Mills NL, Chapman AR. Diagnosis, investigation and management of patients with acute and chronic myocardial injury. J Clin Med. 2021;10:2331.

[123] Cohen B, Cohen S, Tor R, Shochat T, Fuchs S, Kornowski R, et al. Suspected non-ST-elevation acute coronary syndrome meeting rapid rule-out criteria: resource utilization, diagnostic yield, and clinical outcomes of hospital admission. Eur Heart J Qual Care Clin Outcomes. 2023;9:207–15.

[124] Anand A, Lee KK, Chapman AR, Ferry AV, Adamson PD, Strachan FE, et al. High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomized controlled trial. Circulation. 2021;143:2214–24.

[125] Neumann JT, Sörensen NA, Schwemer T, Ojeda F, Bourry R, Sciacca V, et al. Diagnosis of myocardial infarction using a high-sensitivity troponin I 1-hour algorithm. JAMA Cardiol. 2016;1:397–404.

[126] Boeddinghaus J, Nestelberger T, Twerenbold R, Wildi K, Badertscher P, Cupa J, et al. Direct comparison of 4 very early rule-out strategies for acute myocardial infarction using high-sensitivity cardiac troponin I. Circulation. 2017;135:1597–611.

[127] Chapman AR, Anand A, Boeddinghaus J, Ferry AV, Sandeman D, Adamson PD, et al. Comparison of the efficacy and safety of early rule-out pathways for acute myocardial infarction. Circulation. 2017;135:1586–96.

[128] Cullen L, Mueller C, Parsonage WA, Wildi K, Greenslade JH, Twerenbold R, et al. Validation of high-sensitivity troponin I in a 2-hour diagnostic strategy to assess 30-day outcomes in emergency department patients with possible acute coronary syndrome. J Am Coll Cardiol. 2013;62:1242–9.

[129] Rubini Gimenez M, Twerenbold R, Jaeger C, Schindler C, Puelacher C, Wildi K, et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am J Med. 2015;128:861–70.

[130] Boeddinghaus J, Nestelberger T, Twerenbold R, Neumann JT, Lindahl B, Giannitsis E, et al. Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. Eur Heart J. 2018;39:3780–94.

[131] Chapman AR, Fujisawa T, Lee KK, Andrews JP, Anand A, Sandeman D, et al. Novel high-sensitivity cardiac troponin I assay in patients with suspected acute coronary syndrome. Heart. 2019;105:616–22.

[132] Reichlin T, Schindler C, Drexler B, Twerenbold R, Reiter M, Zellweger C, et al. One-hour rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Arch Intern Med. 2012;172:1211–8.

[133] Bularga A, Lee KK, Stewart S, Ferry AV, Chapman AR, Marshall L, et al. High-sensitivity troponin and the application of risk stratification thresholds in patients with suspected acute coronary syndrome. Circulation. 2019;140:1557–68.

[134] Lee C-C, Huang S-S, Yeo YH, Hou Y-T, Park JY, Inoue K, et al. High-sensitivity-cardiac troponin for accelerated diagnosis of acute myocardial infarction: a systematic review and meta-analysis. Am J Med. 2020;38:1402–7.

[135] Westwood M, Ramaekers B, Grimm S, Worthy G, Fayter D, Armstrong N, et al. High-sensitivity troponin assays for early rule-out of acute myocardial infarction in people with acute chest pain: a systematic review and economic evaluation. Health Technol Assess. 2021;25:1–276.

[136] Boeddinghaus J, Nestelberger T, Twerenbold R, Koechlin L, Meier M, Troester V, et al. High-sensitivity cardiac troponin I assay for early diagnosis of acute myocardial infarction. Clin Chem. 2019;65:893–904.

[137] Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK, Chapman AR, et al. High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet. 2018;392:919–28.

[138] Chapman AR, Sandeman D, Ferry AV, Stewart S, Strachan FE, Wereski R, et al. Risk stratification using high-sensitivity cardiac troponin T in patients with suspected acute coronary syndrome. J Am Coll Cardiol. 2020;75:985–7.

[139] Body R, Carley S, McDowell G, Jaffe AS, France M, Cruickshank K, et al. Rapid exclusion of acute myocardial infarction in patients with undetectable troponin using a high-sensitivity assay. J Am Coll Cardiol. 2011;58:1332–9.

[140] Neumann JT, Twerenbold R, Ojeda F, Sörensen NA, Chapman AR, Shah ASV, et al. Application of high-sensitivity troponin in suspected myocardial infarction. N Engl J Med. 2019;380:2529–40.

[141] Apple FS, Jesse RL, Newby LK, Wu AH, Christenson RH. National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: Analytical issues for biochemical markers of acute coronary syndromes. Circulation. 2007;115:e352–5.

[142] Bandstein N, Ljung R, Johansson M, Holzmann MJ. Undetectable high-sensitivity cardiac troponin T level in the emergency department and risk of myocardial infarction. J Am Coll Cardiol. 2014;63:2569–78.

[143] Body R, Burrows G, Carley S, Cullen L, Than M, Jaffe AS, et al. High-sensitivity cardiac troponin T concentrations below the limit of detection to exclude acute myocardial infarction: a prospective evaluation. Clin Chem. 2015;61:983–9.

[144] Peacock WF, Baumann BM, Bruton D, Davis TE, Handy B, Jones CW, et al. Efficacy of high-sensitivity troponin T in identifying very-low-risk patients with possible acute coronary syndrome. JAMA Cardiol. 2018;3:104–11.

[145] Reichlin T, Twerenbold R, Wildi K, Gimenez MR, Bergsma N, Haaf P, et al. Prospective validation of a 1-hour algorithm to rule-out and rule-in acute myocardial infarction using a high-sensitivity cardiac troponin T assay. CMAJ. 2015;187:E243.

[146] Body R, Mueller C, Giannitsis E, Christ M, Ordonez-Llanos J, de Filippi CR, et al. The use of very low concentrations of high-sensitivity troponin T to rule out acute myocardial infarction using a single blood test. Acad Emerg Med. 2016;23:1004–13.

[147] Greenslade J, Cho E, Van Hise C, Hawkins T, Parsonage W, Ungerer J, et al. Evaluating rapid rule-out of acute myocardial infarction using a high-sensitivity cardiac troponin I assay at presentation. Clin Chem. 2018;64:820–9.

[148] Shah AS, Anand A, Sandoval Y, Lee KK, Smith SW, Adamson PD, et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet. 2015;386:2481–8.

[149] Than MP, Aldous SJ, Troughton RW, Pemberton CJ, Richards AM, Frampton CMA, et al. Detectable high-sensitivity cardiac troponin within the population reference interval conveys high 5-year cardiovascular risk: an observational study. Clin Chem. 2018;64:1044–53.

150

[150] Keller T, Zeller T, Peetz D, Tzikas S, Roth A, Czyz E, et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med. 2009;361:868–77.

[151] Chew DP, Lambrakis K, Blyth A, Seshadri A, Edmonds MJR, Briffa T, et al. A randomized trial of a 1-hour troponin T protocol in suspected acute coronary syndromes: the Rapid Assessment of Possible Acute Coronary Syndrome in the Emergency Department With High-Sensitivity Troponin T Study (RAPID-TnT). Circulation. 2019;140:1543–56.

[152] Nowak RM, Christenson RH, Jacobsen G, McCord J, Apple FS, Singer AJ, et al. Performance of novel high-sensitivity cardiac troponin I assays for 0/1-hour and 0/2- to 3-hour evaluations for acute myocardial infarction: results from the HIGH-US Study. Ann Emerg Med. 2020;76:1–13.

[153] Stoyanov KM, Hund H, Biener M, Gandowitz J, Riedle C, Löhr J, et al. RAPID-CPU: a prospective study on implementation of the ESC 0/1-hour algorithm and safety of discharge after rule-out of myocardial infarction. Eur Heart J Acute Cardiovasc Care. 2020;9:39–51.

[154] Boeddinghaus J, Reichlin T, Cullen L, Greenslade JH, Parsonage WA, Hammett C, et al. Two-hour algorithm for triage toward rule-out and rule-in of acute myocardial infarction by use of high-sensitivity cardiac troponin I. Clin Chem. 2016;62:494–504.

[155] Boeddinghaus J, Twerenbold R, Nestelberger T, Badertscher P, Wildi K, Puelacher C, et al. Clinical validation of a novel high-sensitivity cardiac troponin I assay for early dagnosis of acute myocardial infarction. Clin Chem. 2018;64:1347–60.

[156] IFCC Committee on Clinical Applications of Cardiac Bio-Markers (C-CB). High-sensitivity cardiac troponin I and T assay analytical characteristics designated by manufacturer. 2022. Available at ifccfiles.com/2024/03/High-Sensitivity-Cardiac-Troponin-I-and-T-Assay-Analytical-Characteristics-Designated-By-Manufacturer-v062024.pdf.

[157] Nestelberger T, Boeddinghaus J, Greenslade J, Parsonage WA, Than M, Wussler D, et al. Two-hour algorithm for rapid triage of suspected acute myocardial infarction using a high-sensitivity cardiac troponin I assay. Clin Chem. 2019;65:1437–47.

[158] Reichlin T, Irfan A, Twerenbold R, Reiter M, Hochholzer W, Burkhalter H, et al. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation. 2011;124:136–45.

[159] Wildi K, Boeddinghaus J, Nestelberger T, Lopez-Ayala P, Yufera Sanchez A, Okamura B, et al. 0/2h-algorithm for rapid triage of suspected myocardial infarction using a novel high-sensitivity cardiac troponin I assay. Clin Chem. 2021;68:30312.

[160] Wildi K, Cullen L, Twerenbold R, Greenslade JH, Parsonage W, Boeddinghaus J, et al. Direct comparison of 2 rule-out strategies for acute myocardial infarction: 2-h accelerated diagnostic protocol vs 2-h algorithm. Clin Chem. 2017;63:1227–36.

[161] Chan Pin Yin D, Azzahhafi J, James S. Risk assessment using risk scores in patients with acute coronary syndrome. J Clin Med. 2020;9:3039.

[162] Than M, Cullen L, Aldous S, Parsonage WA, Reid CM, Greenslade J, et al. 2-Hour accelerated diagnostic protocol to assess patients with chest pain symptoms using contemporary troponins as the only biomarker: the ADAPT trial. J Am Coll Cardiol. 2012;59:2091–8.

[163] Mahler SA, Riley RF, Hiestand BC, Russell GB, Hoekstra JW, Lefebvre CW, et al. The HEART pathway randomized trial. Circ Cardiovasc Qual Outcomes. 2015;8:195–203.

[164] Cullen L, Greenslade JH, Hawkins T, Hammett C, O'Kane S, Ryan K, et al. Improved Assessment of Chest pain Trial (IMPACT): assessing patients with possible acute coronary syndromes. Med J Aust. 2017;207:195–200.

[165] Parsonage WA, Milburn T, Ashover S, Skoien W, Greenslade JH, McCormack L, et al. Implementing change: evaluating the Accelerated Chest pain Risk Evaluation (ACRE) project. Med J Aust. 2017;207:201–5.

[166] Mark DG, Huang J, Chettipally U, Kene MV, Anderson ML, Hess EP, et al. Performance of coronary risk scores amongpatients with chest pain in the emergency department. J Am Coll Cardiol. 2018;71:60616.

[167] Stopyra JP, Miller CD, Hiestand BC, Lefebvre CW, Nicks BA, Cline DM, et al. Chest pain risk stratification: a comparison of the 2-Hour Accelerated Diagnostic Protocol (ADAPT) and the HEART Pathway. Critical Pathw Cardiol. 2016;15:46–9.

[168] Stopyra JP, Miller CD, Hiestand BC, Lefebvre CW, Nicks BA, Cline DM, et al. Validation of the no objective testing rule and comparison to the HEART pathway. Acad Emerg Med. 2017;24:1165–8.

[169] Stopyra JP, Riley RF, Hiestand BC, Russell GB, Hoekstra JW, Lefebvre CW, et al. The HEART pathway randomized controlled trial one-year outcomes. Acad Emerg Med. 2019;26:41–50.

[170] Chapman AR, Hesse K, Andrews J, Ken Lee K, Anand A, Shah ASV, et al. High-sensitivity cardiac troponin I and clinical risk scores in patients with suspected acute coronary syndrome. Circulation. 2018;138:1654–65.

[171] Khan E, Lambrakis K, Blyth A, Seshadri A, Edmonds MJR, Briffa T, et al. Classification performance of clinical risk scoring in suspected acute coronary syndrome beyond a rule-out troponin profile. Eur Heart J Acute Cardiovasc Care. 2021;10:1038–47.

[172] Bank IEM, de Hoog VC, de Kleijn DPV, Pasterkamp G, Doevendans PA, den Ruijter HM, et al. Sex-based differences in the performance of the HEART Score in patients presenting to the emergency department with acute chest pain. J Am Heart Assoc. 2017;6:e005373.

[173] Greenslade JH, Parsonage W, Foran L, McCormack L, Ashover S, Milburn T, et al. Widespread introduction of a high-sensitivity troponin assay: assessing the impact on patients and health services. J Clin Med. 2020;9:1883.

[174] Ambavane A, Lindahl B, Giannitsis E, Roiz J, Mendivil J, Frankenstein L, et al. Economic evaluation of the one-hour rule-out and rule-in algorithm for acute myocardial infarction using the high-sensitivity cardiac troponin T assay in the emergency department. PLoS One. 2017;12:e0187662.

[175] Ljung L, Lindahl B, Eggers KM, Frick M, Linder R, Löfmark HB, et al. A rule-out strategy based on high-sensitivity troponin and HEART Score reduces hospital admissions. Ann Emerg Med. 2019;73:491–9.

[176] Twerenbold R, Jaeger C, Rubini Gimenez M, Wildi K, Reichlin T, Nestelberger T, et al. Impact of high-sensitivity cardiac troponin on use of coronary angiography, cardiac stress testing, and time to discharge in suspected acute myocardial infarction. Eur Heart J. 2016;37:3324–32.

[177] Mueller-Hennessen M, Lindahl B, Giannitsis E, Biener M, Vafaie M, deFilippi CR, et al. Diagnostic and prognostic implications using age- and gender-specific cut-offs for high-sensitivity cardiac troponin T - Sub-analysis from the TRAPID-AMI study. Int J Cardiol. 2016;209:26–33.

[178] Canto JG, Rogers WJ, Goldberg RJ, Peterson ED, Wenger NK, Vaccarino V, et al. Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. JAMA. 2012;307:813–22.

[179] Hillinger P, Twerenbold R, Wildi K, Rubini Gimenez M, Jaeger C, Boeddinghaus J, et al. Gender-specific uncertainties in the diagnosis of acute coronary syndrome. Clin Res Cardiol. 2017;106:28–37.

[180] Miller-Hodges E, Anand A, Shah ASV, Chapman AR, Gallacher P, Lee KK, et al. High-sensitivity cardiac troponin and the risk stratification of patients with renal impairment presenting with suspected acute coronary syndrome. Circulation. 2018;137:425–35.

[181] Bodapati SN, Gunnarsson R, McBride WJ, Stone R, Sutcliffe S. Chest pain risk assessment in Indigenous and non-Indigenous Australians using HEART Score. Emerg Med Australas. 2016;28:138–44.

[182] Agostino JW, Wong D, Paige E, Wade V, Connell C, Davey ME, et al. Cardiovascular disease risk assessment for Aboriginal and Torres Strait Islander adults aged under 35 years: a consensus statement. Med J Aust. 2020;212:422–7.

[183] Cullen L, Stephensen L, Greenslade J, Starmer K, Starmer G, Stone R, et al. Emergency department assessment of suspected acute coronary syndrome using the IMPACT Pathway in Aboriginal and Torres Strait Islander People. Heart Lung Circ. 2022;31:1029–36.

[184] deFilippi C, Seliger SL, Kelley W, Duh SH, Hise M, Christenson RH, et al. Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome. Clin Chem. 2012;58:1342–51.

[185] Doudesis D, Lee KK, Bularga A, Ferry AV, Tuck C, Anand A, et al. Machine learning to optimise use of cardiac troponin in the diagnosis of acute myocardial infarction. Eur Heart J. 2022;43:1201–10.

[186] Than MP, Pickering JW, Sandoval Y, Shah ASV, Tsanas A, Apple FS, et al. Machine learning to predict the likelihood of acute myocardial infarction. Circulation. 2019;140:899–909.

[187] Neumann JT, Twerenbold R, Ojeda F, Aldous SJ, Allen BR, Apple FS, et al. Personalized diagnosis in suspected myocardial infarction. Clin Res Cardiol. 2023;9:1288–301.

[188] Reilly IA, FitzGerald GA. Inhibition of thromboxane formation in vivo and ex vivo: implications for therapy with platelet inhibitory drugs. Blood. 1987;69:180–6.

[189] Antithrombotic Trialists Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:71–86.

[190] Antiplatelet Trialists' Collaboration. Collaborative overview of randomised trials of antiplatelet therapy: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ. 1994;308:81–106.

[191] Hofmann R, James SK, Jernberg T, Lindahl B, Erlinge D, Witt N, et al. Oxygen therapy in suspected acute myocardial infarction. N Engl J Med. 2017;377:1240–9.

[192] Stewart RAH, Jones P, Dicker B, Jiang Y, Smith T, Swain A, et al. High flow oxygen and risk of mortality in patients with a suspected acute coronary syndrome: pragmatic, cluster randomised, crossover trial. BMJ. 2021;372:n355.

[193] Chu DK, Kim LH, Young PJ, Zamiri N, Almenawer SA, Jaeschke R, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018;391:1693–705.

[194] Cabello JB, Burls A, Emparanza JI, Bayliss S, Quinn T. Oxygen therapy for acute myocardial infarction. Cochrane Database Syst Rev. 2016:12;CD007160.

[195] Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray JE, et al. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015;131:2143–50.

[196] Hofmann R, James SK, Svensson L, Witt N, Frick M, Lindahl B, et al. DETermination of the role of OXygen in suspected acute myocardial infarction trial. Am Heart J. 2014;167:322–8.

[197] ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58 050 patients with suspected acute myocardial infarction. Lancet. 1995;345:669–85.

[198] Italian Group for the Study of Survival in Myocardial Infarction. GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet. 1994;343:1115–22.

[199] Duarte GS, Nunes-Ferreira A, Rodrigues FB, Pinto FJ, Ferreira JJ, Costa J, et al. Morphine in acute coronary syndrome: systematic review and meta-analysis. BMJ Open. 2019;9:e025232.

200

[200] Iglesias JF, Valgimigli M, Carbone F, Lauriers N, Masci PG, Degrauwe S. Effects of fentanyl versus morphine on ticagrelor-induced platelet inhibition in patients with ST-segment elevation myocardial infarction. Circulation. 2020;142:2479–81.

[201] Ghadban R, Enezate T, Payne J, Allaham H, Halawa A, Fong HK, et al. The safety of morphine use in acute coronary syndrome: a meta-analysis. Heart Asia. 2019;11:e011142.

[202] Parodi G, Bellandi B, Xanthopoulou I, Capranzano P, Capodanno D, Valenti R, et al. Morphine is associated with a delayed activity of oral antiplatelet agents in patients with ST-elevation acute myocardial infarction undergoing primary percutaneous coronary intervention. Circ Cardiovasc Interv. 2015;8:e001593.

[203] Lapostolle F, van’t Hof AW, Hamm CW, Stibbe O, Ecollan P, Collet J-P, et al. Morphine and ticagrelor interaction in primary percutaneous coronary intervention in ST-segment elevation myocardial infarction: ATLANTIC-morphine. Am J Cardiovasc Drugs. 2019;19:173–83.

[204] Kubica J, Adamski P, Ostrowska M, Sikora J, Kubica JM, Sroka WD, et al. Morphine delays and attenuates ticagrelor exposure and action in patients with myocardial infarction: the randomized, double-blind, placebo-controlled IMPRESSION trial. Eur Heart J. 2016;37:245–52.

[205] Gislason GH, Jacobsen S, Rasmussen JN, Rasmussen S, Buch P, Friberg J, et al. Risk of death or reinfarction associated with the use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs after acute myocardial infarction. Circulation. 2006;113:2906–13.

[206] Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ. 2006;332:1302–8.

[207] Celik S, Giannitsis E, Wollert KC, Schwöbel K, Lossnitzer D, Hilbel T, et al. Cardiac troponin T concentrations above the 99th percentile value as measured by a new high-sensitivity assay predict long-term prognosis in patients with acute coronary syndromes undergoing routine early invasive strategy. Clin Res Cardiol. 2011;100:1077–85.

[208] Melki D, Lugnegård J, Alfredsson J, Lind S, Eggers KM, Lindahl B, et al. Implications of introducing high-sensitivity cardiac troponin t into clinical practice: Data from the SWEDEHEART registry. J Am Coll Cardiol. 2015;65:1655–64.

[209] Hermann LK, Weingart SD, Duvall WL, Henzlova MJ. The limited utility of routine cardiac stress testing in emergency department chest pain patients younger than 40 years. Ann Emerg Med. 2009;54:12–6.

[210] Greenslade JH, Parsonage W, Ho A, Scott A, Dalton E, Hammett C, et al. Utility of routine exercise stress testing among intermediate risk chest pain patients attending an emergency department. Heart Lung Circ. 2015;24:879–84.

[211] Sandoval Y, Apple FS, Mahler SA, Body R, Collinson PO, Jaffe AS. High-sensitivity cardiac troponin and the 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guidelines for the evaluation and diagnosis of acute chest pain. Circulation. 2022;146:569–81.

[212] Mowatt G, Cook JA, Hillis GS, Walker S, Fraser C, Jia X, et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart. 2008;94:1386–93.

[213] von Ballmoos MW, Haring B, Juillerat P, Alkadhi H. Meta-analysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med. 2011;154:413–20.

[214] Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57:1237–47.

[215] Andreini D, Pontone G, Mushtaq S, Bartorelli AL, Bertella E, Antonioli L, et al. A long-term prognostic value of coronary CT angiography in suspected coronary artery disease. JACC: Cardiovasc Imaging. 2012;5:690–701.

[216] Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

[217] Samad Z, Hakeem A, Mahmood SS, Pieper K, Patel MR, Simel DL, et al. A meta-analysis and systematic review of computed tomography angiography as a diagnostic triage tool for patients with chest pain presenting to the emergency department. J Nucl Cardiol. 2012;19:364–76.

[218] Kontos MC, de Lemos JA, Deitelzweig SB, Diercks DB, Gore MO, Hess EP, et al. 2022 ACC expert consensus decision pathway on the evaluation and disposition of acute chest pain in the emergency department: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022;80:1925–60.

[219] Zito A, Galli M, Biondi-Zoccai G, Abbate A, Douglas PS, Princi G, et al. Diagnostic strategies for the assessment of suspected stable coronary artery disease: a systematic review and meta-analysis. Ann Intern Med. 2023;176:817–26.

[220] Genders TS, Petersen SE, Pugliese F, Dastidar AG, Fleischmann KE, Nieman K, et al. The optimal imaging strategy for patients with stable chest pain: a cost-effectiveness analysis. Ann Emerg Med. 2015;162:474–84.

[221] Alexander M, Lan NSR, Dallo MJ, Briffa TG, Sanfilippo FM, Hooper A, et al. Clinical outcomes and health care costs of transferring rural Western Australians for invasive coronary angiography, and a cost-effective alternative care model: a retrospective cross-sectional study. Med J Aust. 2023;219:155–61.

[222] Scott AC, McDonald A, Roberts T, Martin C, Manns T, Webster M, et al. Cardiovascular telemedicine program in rural Australia. N Engl J Med. 2020;383:883–4.

[223] Tenkorang JN, Fox KF, Collier TJ, Wood DA. A rapid access cardiology service for chest pain, heart failure and arrhythmias accurately diagnoses cardiac disease and identifies patients at high risk: a prospective cohort study. Heart. 2006;92:1084–90.

[224] Cho KK, French JK, Figtree GA, Chow CK, Kozor R. Rapid access chest pain clinics in Australia and New Zealand. Med J Aust. 2023;219:168–72.

[225] Kozor R, Mooney J, Lowe H, Kritharides L, Altman M, Klimis H, et al. Rapid access chest pain clinics: an Australian cost-benefit study. Heart Lung Circ. 2022;31:177–82.

[226] Black JA, Cheng K, Flood JA, Hamilton G, Parker S, Enayati A, et al. Evaluating the benefits of a rapid access chest pain clinic in Australia. Med J Aust. 2019;210:321–5.

[227] Yu C, Brazete S, Gullick J, Garcia MT, Brieger D, Kritharides L, et al. Long-term outcomes following rapid access chest pain clinic assessment: first Australian data. Heart Lung Circ. 2021;30:1309–13.

[228] Klimis H, Khan ME, Thiagalingam A, Bartlett M, Altman M, Wynne D, et al. Rapid access cardiology (RAC) services within a large tertiary referral centre—first year in review. Heart Lung Circ. 2018;27:1381–7.

[229] Klimis H, Thiagalingam A, Altman M, Atkins E, Figtree G, Lowe H, et al. Rapid-access cardiology services: can these reduce the burden of acute chest pain on Australian and New Zealand health services? Intern Med J. 2017;47:986–91.

[230] Tideman PA, Tirimacco R, Senior DP, Setchell JJ, Huynh LT, Tavella R, et al. Impact of a regionalised clinical cardiac support network on mortality among rural patients with myocardial infarction. Med J Aust. 2014;200:157–60.

[231] Puymirat E, Simon T, Steg PG, Schiele F, Guéret P, Blanchard D, et al. Association of changes in clinical characteristics and management with improvement in survival among patients with ST-elevation myocardial infarction. JAMA. 2012;308:998–1006.

[232] Jollis JG, Granger CB, Henry TD, Antman EM, Berger PB, Moyer PH, et al. Systems of care for ST-segment-elevation myocardial infarction: a report from the American Heart Association's Mission: Lifeline. Circ Cardiovasc Qual Outcomes. 2012;5:423–8.

[233] Postma S, Bergmeijer T, ten Berg J, van 't Hof A. Pre-hospital diagnosis, triage and treatment in patients with ST elevation myocardial infarction. Heart. 2012;98:1674–8.

[234] Patel M, Dunford JV, Aguilar S, Castillo E, Patel E, Fisher R, et al. Pre-hospital electrocardiography by emergency medical personnel: effects on scene and transport times for chest pain and ST-segment elevation myocardial infarction patients. J Am Coll Cardiol. 2012;60:806–11.

[235] Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Jr., Ganiats TG, Holmes DR, Jr., et al. 2014 AHA/ACC Guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;64:e139–228.

[236] O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, et al. 2013 ACCF/AHA Guideline for the management of ST-elevation myocardial infarction. Circulation. 2013;127:e362–425.

[237] Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77.

[238] Collinson PO, Saenger AK, Apple FS. High sensitivity, contemporary and point-of-care cardiac troponin assays: educational aids developed by the IFCC Committee on Clinical Application of Cardiac Bio-Markers. Clin Chem Lab Med. 2019;57:623–32.

[239] Harskamp RE, Laeven SC, Himmelreich JC, Lucassen WAM, Weert HCPMv. Chest pain in general practice: a systematic review of prediction rules. BMJ Open. 2019;9:e027081.

[240] Demandt JPA, Zelis JM, Koks A, Smits GHJM, Harst Pvd, Tonino PAL, et al. Prehospital risk assessment in patients suspected of non-ST-segment elevation acute coronary syndrome: a systematic review and meta-analysis. BMJ Open. 2022;12:e057305.

[241] Brieger DB, Chew DP, Redfern J, Ellis C, Briffa TG, Howell TE, et al. Survival after an acute coronary syndrome: 18-month outcomes from the Australian and New Zealand SNAPSHOT ACS study. Med J Aust. 2015;203:368.

[242] Alston L, Allender S, Peterson K, Jacobs J, Nichols M. Rural inequalities in the Australian burden of ischaemic heart disease: a systematic review. Heart Lung Circ. 2017;26:122–33.

[243] Norman T, Young J, Jones JS, Egan G, Pickering J, Toit SD, et al. Implementation and evaluation of a rural general practice assessment pathway for possible cardiac chest pain using point-of-care troponin testing: a pilot study. BMJ Open. 2022;12:e044801.

[244] Wen LS, Espinola JA, Kosowsky JM, Camargo CA, Jr. Do emergency department patients receive a pathological diagnosis? A nationally-representative sample. West J Emerg Med. 2015;16:50–4.

[245] Sawatzky JA, Christie S, Singal RK. Exploring outcomes of a nurse practitioner-managed cardiac surgery follow-up intervention: a randomized trial. J Adv Nurs. 2013;69:2076–87.

[246] Musey Jr PI, Patel R, Fry C, Jimenez G, Koene R, Kline JA. Anxiety associated with increased risk for emergency department recidivism in patients with low-risk chest pain. Am J Cardiol. 2018;122:1133–41.

[247] Zijlstra F, Hoorntje JCA, de Boer M-J, Reiffers S, Miedema K, Ottervanger JP, et al. Long-term benefit of primary angioplasty as compared with thrombolytic therapy for acute myocardial infarction. N Engl J Med. 1999;341:1413–9.

[248] Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet. 2003;361:13–20.

[249] Widimský P, Budešínský T, Voráč D, Groch L, Želízko M, Aschermann M, et al. Long distance transport for primary angioplasty vs immediate thrombolysis in acute myocardial infarction: Final results of the randomized national multicentre trial—PRAGUE-2. Eur Heart J. 2003;24:94–104.

250

[250] Andersen HR, Nielsen TT, Rasmussen K, Thuesen L, Kelbaek H, Thayssen P, et al. A comparison of coronary angioplasty with fibrinolytic therapy in acute myocardial infarction. N Engl J Med. 2003;349:733–42.

[251] Boersma E. Does time matter? A pooled analysis of randomized clinical trials comparing primary percutaneous coronary intervention and in-hospital fibrinolysis in acute myocardial infarction patients. Eur Heart J. 2006;27:779–88.

[252] Gierlotka M, Gasior M, Wilczek K, Hawranek M, Szkodzinski J, Paczek P, et al. Reperfusion by primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction within 12 to 24 hours of the onset of symptoms (from a prospective national observational study [PL-ACS]). Am J Cardiol. 2011;107:501–8.

[253] Busk M, Kaltoft A, Nielsen SS, Bøttcher M, Rehling M, Thuesen L, et al. Infarct size and myocardial salvage after primary angioplasty in patients presenting with symptoms for <12 h vs. 12–72 h. Eur Heart J. 2009;30:1322–30.

[254] Schömig A, Mehilli J, Antoniucci D, Ndrepepa G, Markwardt C, Di Pede F, et al. Mechanical reperfusion in patients with acute myocardial infarction presenting more than 12 hours from symptom onset: a randomized controlled trial. JAMA. 2005;293:2865–72.

[255] Ndrepepa G, Kastrati A, Mehilli J, Antoniucci D, Schömig A. Mechanical reperfusion and long-term mortality in patients with acute myocardial infarction presenting 12 to 48 hours from onset of symptoms. JAMA. 2009;301:487–8.

[256] Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Rev Esp Cardiol (Engl Ed). 2017;70:1082.

[257] Fibrinolytic Therapy Trialists' (FTT) Collaborative Group. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists' (FTT) Collaborative Group. Lancet. 1994;343:311–22.

[258] Steg PG, Bonnefoy E, Chabaud S, Lapostolle F, Dubien PY, Cristofini P, et al. Impact of time to treatment on mortality after prehospital fibrinolysis or primary angioplasty: data from the CAPTIM randomized clinical trial. Circulation. 2003;108:2851–6.

[259] Boersma E, Maas ACP, Deckers JW, Simoons ML. Early thrombolytic treatment in acute myocardial infarction: reappraisal of the golden hour. Lancet. 1996;348:771–5.

[260] Hochman JS, Reynolds HR, Džavík V, Buller CE, Ruzyllo W, Sadowski ZP, et al. Long-term effects of percutaneous coronary intervention of the totally occluded infarct-related artery in the subacute phase after myocardial infarction. Circulation. 2011;124:2320–8.

[261] Menon V, Pearte CA, Buller CE, Steg PG, Forman SA, White HD, et al. Lack of benefit from percutaneous intervention of persistently occluded infarct arteries after the acute phase of myocardial infarction is time independent: insights from Occluded Artery Trial. Eur Heart J. 2009;30:183–91.

[262] Ioannidis JPA, Katritsis DG. Percutaneous coronary intervention for late reperfusion after myocardial infarction in stable patients. Am Heart J. 2007;154:1065–71.

[263] Pinto DS, Frederick PD, Chakrabarti AK, Kirtane AJ, Ullman E, Dejam A, et al. Benefit of transferring ST-segment–elevation myocardial infarction patients for percutaneous coronary intervention compared with administration of onsite fibrinolytic declines as delays increase. Circulation. 2011;124:2512–21.

[264] Wong GC, Welsford M, Ainsworth C, Abuzeid W, Fordyce CB, Greene J, et al. 2019 Canadian Cardiovascular Society/Canadian Association of Interventional Cardiology Guidelines on the acute management of ST-elevation myocardial infarction: focused update on regionalization and reperfusion. Can J Cardiol. 2019;35:107–32.

[265] Armstrong PW, Gershlick AH, Goldstein P, Wilcox R, Danays T, Lambert Y, et al. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction. N Engl J Med. 2013;368:1379–87.

[266] Morrison LJ, Verbeek PR, McDonald AC, Sawadsky BV, Cook DJ. Mortality and prehospital thrombolysis for acute myocardial infarction a meta-analysis. JAMA. 2000;283:2686–92.

[267] Werf FVd, Ristić AD, Averkov OV, Arias-Mendoza A, Lambert Y, Saraiva JFK, et al. STREAM-2: Half-dose tenecteplase or primary percutaneous coronary intervention in older patients with ST-segment–elevation myocardial infarction: A randomized, open-label trial. Circulation. 2023;148:753–64.

[268] Terkelsen CJ, Sørensen JT, Maeng M, Jensen LO, Tilsted HH, Trautner S, et al. System delay and mortality among patients with STEMI treated with primary percutaneous coronary intervention. JAMA. 2010;304:763–71.

[269] Nallamothu BK, Normand SL, Wang Y, Hofer TP, Brush JE, Jr., Messenger JC, et al. Relation between door-to-balloon times and mortality after primary percutaneous coronary intervention over time: a retrospective study. Lancet. 2015;385:1114–22.

[270] Squire BT, Tamayo-Sarver JH, Rashi P, Koenig W, Niemann JT. Effect of prehospital cardiac catheterization lab activation on door-to-balloon time, mortality, and false-positive activation. Prehosp Emerg Care. 2014;18:1–8.

[271] Mehta SR, Jolly SS, Cairns J, Niemela K, Rao SV, Cheema AN, et al. Effects of radial versus femoral artery access in patients with acute coronary syndromes with or without ST-segment elevation. J Am Coll Cardiol. 2012;60:2490–9.

[272] Shah R, Khan B. The MATRIX trial. Lancet. 2019;393:1803.

[273] Jolly SS, Yusuf S, Cairns J, Niemelä K, Xavier D, Widimsky P, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011;377:1409–20.

[274] Romagnoli E, Biondi-Zoccai G, Sciahbasi A, Politi L, Rigattieri S, Pendenza G, et al. Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: The RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) Study. J Am Coll Cardiol. 2012;60:2481–9.

[275] Gargiulo G, Giacoppo D, Jolly SS, Cairns J, Le May M, Bernat I, et al. Effects on mortality and major bleeding of radial versus femoral artery access for coronary angiography or percutaneous coronary intervention: a meta-analysis of individual patient data from 7 multicenter randomized clinical trials. Circulation. 2022;146:1329–43.

[276] Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, et al. 2021 ACC/AHA/SCAI Guideline for coronary artery revascularization: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;145(3:e4–17.

[277] Barkagan M, Steinvil A, Berchenko Y, Finkelstein A, Keren G, Banai S, et al. Impact of routine manual aspiration thrombectomy on outcomes of patients undergoing primary percutaneous coronary intervention for acute myocardial infarction: A meta-analysis. Int J Cardiol. 2016;204:189–95.

[278] Fröbert O, Lagerqvist B, Olivecrona GK, Omerovic E, Gudnason T, Maeng M, et al. Thrombus aspiration during ST-degment elevation myocardial infarction. N Engl J Med. 2013;369:1587–97.

[279] Jolly SS, Cairns JA, Yusuf S, Meeks B, Pogue J, Rokoss MJ, et al. Randomized trial of primary PCI with or without routine manual thrombectomy. N Engl J Med. 2015;372:1389–98.

[280] National Guideline Centre. Evidence review for antiplatelet therapy for people with an ongoing separate indication for anticoagulation: Acute coronary syndrome: Evidence review G. London: National Institute for Health and Care Excellence (NICE); 2020.

[281] Räber L, Yamaji K, Kelbæk H, Engstrøm T, Baumbach A, Roffi M, et al. Five-year clinical outcomes and intracoronary imaging findings of the COMFORTABLE AMI trial: randomized comparison of biodegradable polymer-based biolimus-eluting stents with bare-metal stents in patients with acute ST-segment elevation myocardial infarction. Eur Heart J. 2019;40:1909–19.

[282] Sabaté M, Brugaletta S, Cequier A, Iñiguez A, Serra A, Jiménez-Quevedo P, et al. Clinical outcomes in patients with ST-segment elevation myocardial infarction treated with everolimus-eluting stents versus bare-metal stents (EXAMINATION): 5-year results of a randomised trial. Lancet. 2016;387:357–66.

[283] Bønaa KH, Mannsverk J, Wiseth R, Aaberge L, Myreng Y, Nygård O, et al. Drug-eluting or bare-metal stents for coronary artery disease. N Engl J Med. 2016;375:1242–52.

[284] Piccolo R, Bonaa KH, Efthimiou O, Varenne O, Baldo A, Urban P, et al. Drug-eluting or bare-metal stents for percutaneous coronary intervention: a systematic review and individual patient data meta-analysis of randomised clinical trials. Lancet. 2019;393:2503–10.

[285] Palmerini T, Benedetto U, Biondi-Zoccai G, Della Riva D, Bacchi-Reggiani L, Smits PC, et al. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2015;65:2496–507.

[286] Carrick D, Oldroyd KG, McEntegart M, Haig C, Petrie MC, Eteiba H, et al. A randomized trial of deferred stenting versus immediate stenting to prevent no- or slow-reflow in acute ST-segment elevation myocardial infarction (DEFER-STEMI). J Am Coll Cardiol. 2014;63:2088–98.

[287] Kelbæk H, Høfsten DE, Køber L, Helqvist S, Kløvgaard L, Holmvang L, et al. Deferred versus conventional stent implantation in patients with ST-segment elevation myocardial infarction (DANAMI 3-DEFER): an open-label, randomised controlled trial. Lancet. 2016;387:2199–206.

[288] Madsen JK, Grande P, Saunamäki K, Thayssen P, Kassis E, Eriksen U, et al. Danish multicenter randomized study of invasive versus conservative treatment in patients with inducible ischemia after thrombolysis in acute myocardial infarction (DANAMI). Circulation. 1997;96:748–55.

[289] Engstrøm T, Kelbæk H, Helqvist S, Høfsten DE, Kløvgaard L, Holmvang L, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): an open-label, randomised controlled trial. Lancet. 2015;386:665–71.

[290] Steg PG, Thuaire C, Himbert D, Carrié D, Champagne Sp, Coisne D, et al. DECOPI (DEsobstruction COronaire en Post-Infarctus): a randomized multi-centre trial of occluded artery angioplasty after acute myocardial infarction. Eur Heart J. 2004;25:2187–94.

[291] Pi Y, Roe MT, Holmes DN, Chiswell K, Garvey JL, Fonarow GC, et al. Utilization, characteristics, and in-hospital outcomes of coronary artery bypass grafting in patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Qual Outcomes. 2017;10:e003490.

[292] Grothusen C, Friedrich C, Loehr J, Meinert J, Ohnewald E, Ulbricht U, et al. Outcome of stable patients with acute myocardial infarction and coronary artery bypass surgery within 48 hours: a single‐center, retrospective experience. J Am Heart Assoc. 2017;6:e005498.

[293] Fazel R, Joseph TI, Sankardas MA, Pinto DS, Yeh RW, Kumbhani DJ, et al. Comparison of reperfusion strategies for ST-segment-elevation myocardial infarction: A multivariate network meta-analysis. J Am Heart Assoc. 2020;9:e015186.

[294] Borgia F, Goodman SG, Halvorsen S, Cantor WJ, Piscione F, Le May MR, et al. Early routine percutaneous coronary intervention after fibrinolysis vs. standard therapy in ST-segment elevation myocardial infarction: a meta-analysis. Eur Heart J. 2010;31:2156–69.

[295] Madan M, Halvorsen S, Di Mario C, Tan M, Westerhout CM, Cantor WJ, et al. Relationship between time to invasive assessment and clinical outcomes of patients undergoing an early invasive strategy after fibrinolysis for ST-segment elevation myocardial infarction: a patient-level analysis of the randomized early routine invasive clinical trials. JACC: Cardiovasc Imaging. 2015;8:166–74.

[296] Wijeysundera HC, Vijayaraghavan R, Nallamothu BK, Foody JM, Krumholz HM, Phillips CO, et al. Rescue angioplasty or repeat fibrinolysis after failed fibrinolytic therapy for ST-segment myocardial infarction: A meta-analysis of randomized trials. J Am Coll Cardiol. 2007;49:422–30.

[297] White HD. Systems of care: need for hub-and-spoke systems for both primary and systematic percutaneous coronary intervention after fibrinolysis. Circulation. 2008;118:219–22.

[298] Gershlick AH, Stephens-Lloyd A, Hughes S, Abrams KR, Stevens SE, Uren NG, et al. Rescue angioplasty after failed thrombolytic therapy for acute myocardial infarction. N Engl J Med. 2005;353:2758–68.

[299] Aragam KG, Tamhane UU, Kline-Rogers E, Li J, Fox KA, Goodman SG, et al. Does simplicity compromise accuracy in ACS risk prediction? A retrospective analysis of the TIMI and GRACE risk scores. PLoS One. 2009;4:e7947.

300

[300] D'Ascenzo F, Biondi-Zoccai G, Moretti C, Bollati M, Omedè P, Sciuto F, et al. TIMI, GRACE and alternative risk scores in Acute Coronary Syndromes: a meta-analysis of 40 derivation studies on 216,552 patients and of 42 validation studies on 31,625 patients. Contemp Clin Trials. 2012;33:507–14.

[301] Bing R, Goodman SG, Yan AT, Fox K, Gale CP, Hyun K, et al. Use of clinical risk stratification in non-ST elevation acute coronary syndromes: an analysis from the CONCORDANCE registry. Eur Heart J Qual Care Clin Outcomes. 2018;4:309–17.

[302] Saar A, Marandi T, Ainla T, Fischer K, Blöndal M, Eha J. The risk-treatment paradox in non-ST-elevation myocardial infarction patients according to their estimated GRACE risk. Int J Cardiol. 2018;272:26–32.

[303] Ranasinghe I, Alprandi-Costa B, Chow V, Elliott JM, Waites J, Counsell JT, et al. Risk stratification in the setting of non-ST elevation acute coronary syndromes 1999-2007. Am J Cardiol. 2011;108:617–24.

[304] Scott IA, Derhy PH, O'Kane D, Lindsay KA, Atherton JJ, Jones MA. Discordance between level of risk and intensity of evidence-based treatment in patients with acute coronary syndromes. Med J Aust. 2007;187:153–9.

[305] Chew DP, Hyun K, Morton E, Horsfall M, Hillis GS, Chow CK, et al. Objective risk assessment vs standard care for acute coronary syndromes: A randomized clinical trial. JAMA Cardiol. 2021;6:304–13.

[306] Gale CP, Stocken DD, Aktaa S, Reynolds C, Gilberts R, Brieger D, et al. Effectiveness of GRACE risk score in patients admitted to hospital with non-ST elevation acute coronary syndrome (UKGRIS): parallel group cluster randomised controlled trial. BMJ. 2023;381:e073843.

[307] Grinstein J, Bonaca MP, Jarolim P, Conrad MJ, Bohula-May E, Deenadayalu N, et al. Prognostic implications of low level cardiac troponin elevation using high-sensitivity cardiac troponin T. Clin Cardiol. 2015;38:230–5.

[308] Wang TKM, Mehta OH, Liao Y-WB, Wang MTM, Stewart R, White H. Meta-analysis of bleeding scores performance for acute coronary syndrome. Heart Lung Circ. 2020;29:1749–57.

[309] Urban P, Mehran R, Colleran R, Angiolillo DJ, Byrne RA, Capodanno D, et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention. Circulation. 2019;140:240–61.

[310] Costa F, Van Klaveren D, Feres F, James S, Räber L, Pilgrim T, et al. Dual antiplatelet therapy duration based on ischemic and bleeding risks after coronary stenting. J Am Coll Cardiol. 2019;73:741–54.

[311] Wenzl FA, Kraler S, Ambler G, Weston C, Herzog SA, Räber L, et al. Sex-specific evaluation and redevelopment of the GRACE score in non-ST-segment elevation acute coronary syndromes in populations from the UK and Switzerland: a multinational analysis with external cohort validation. Lancet. 2022;400:744–56.

[312] Hung J, Roos A, Kadesjö E, McAllister DA, Kimenai DM, Shah ASV, et al. Performance of the GRACE 2.0 score in patients with type 1 and type 2 myocardial infarction. Eur Heart J. 2021;42:2552–61.

[313] Subherwal S, Bach RG, Chen AY, Gage BF, Rao SV, Newby LK, et al. Baseline risk of major bleeding in non-ST-segment-elevation myocardial infarction: the CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA Guidelines) Bleeding Score. Circulation. 2009;119:1873–82.

[314] Chung K, Wilkinson C, Veerasamy M, Kunadian V. Frailty scores and their utility in older patients with cardiovascular disease. Interv Cardiol. 2021;16:e05.

[315] Damluji AA, Chung SE, Xue QL, Hasan RK, Walston JD, Forman DE, et al. Physical frailty phenotype and the development of geriatric syndromes in older adults with coronary heart disease. Am J Med. 2021;134:662–71.

[316] Ratcovich H, Beska B, Mills G, Holmvang L, Adams-Hall J, Stevenson H, et al. Five-year clinical outcomes in patients with frailty aged ≥75 years with non-ST elevation acute coronary syndrome undergoing invasive management. Eur Heart J Open. 2022;2:oeac035.

[317] Damluji AA, Huang J, Bandeen-Roche K, Forman DE, Gerstenblith G, Moscucci M, et al. Frailty among older adults with acute myocardial infarction and outcomes from percutaneous coronary interventions. J Am Heart Assoc. 2019;8:e013686.

[318] Alfredsson J, Clayton T, Damman P, Fox KA, Fredriksson M, Lagerqvist B, et al. Impact of an invasive strategy on 5 years outcome in men and women with non-ST-segment elevation acute coronary syndromes. Am Heart J. 2014;168:522–9.

[319] Damman P, Wallentin L, Fox KA, Windhausen F, Hirsch A, Clayton T, et al. Long-term cardiovascular mortality after procedure-related or spontaneous myocardial infarction in patients with non-ST-segment elevation acute coronary syndrome: a collaborative analysis of individual patient data from the FRISC II, ICTUS, and RITA-3 trials (FIR). Circulation. 2012;125:568–76.

[320] Fox KA, Clayton TC, Damman P, Pocock SJ, de Winter RJ, Tijssen JG, et al. Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data. J Am Coll Cardiol. 2010;55:2435–45.

[321] Elgendy IY, Mahmoud AN, Wen X, Bavry AA. Meta-analysis of randomized trials of long-term all-cause mortality in patients with non ST-elevation acute coronary syndrome managed with routine invasive versus selective invasive strategies. Am J Cardiol. 2017;119:560–4.

[322] Elgendy IY, Kumbhani DJ, Mahmoud AN, Wen X, Bhatt DL, Bavry AA. Routine invasive versus selective invasive strategies for non ST-elevation acute coronary syndromes: an updated meta-analysis of randomized trials. Catheter Cardiovasc Interv. 2016;88:765–74.

[323] Hoenig MR, Aroney CN, Scott IA. Early invasive versus conservative strategies for unstable angina and non-ST elevation myocardial infarction in the stent era. Cochrane Database Syst Rev. 2010;3:CD004815.

[324] Lim SH, Anantharaman V, Sundram F, Chan ES-Y, Ang ES, Yo SL, et al. Stress myocardial perfusion imaging for the evaluation and triage of chest pain in the emergency department: a randomized controlled trial. J Nucl Cardiol. 2013;20:1002–12.

[325] Nabi F, Kassi M, Muhyieddeen K, Chang SM, Xu J, Peterson LE, et al. Optimizing evaluation of patients with low-to-intermediate-risk acute chest pain: a randomized study comparing stress myocardial perfusion tomography incorporating stress only imaging versus cardiac CT. J Nucl Cardiol. 2016;57:378.

[326] Siontis GCM, Mavridis D, Greenwood JP, Coles B, Nikolakopoulou A, Jüni P, et al. Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials. BMJ. 2018;360:k504.

[327] Smulders MW, Kietselaer BLJH, Wildberger JE, Dagnelie PC, Brunner–La Rocca H-P, Mingels AMA, et al. Initial imaging-guided strategy versus routine care in patients with non–ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2019;74:2466–77.

[328] Linde JJ, Kelbæk H, Hansen TF, Sigvardsen PE, Torp-Pedersen C, Bech J, et al. Coronary CT angiography in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol. 2020;75:453–63.

[329] Dedic A, Lubbers MM, Schaap J, Lammers J, Lamfers EJ, Rensing BJ, et al. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins: randomized multicenter study. J Am Coll Cardiol. 2016;67:16–26.

[330] Mehta SR, Granger CB, Boden WE, Steg PG, Bassand J-P, Faxon DP, et al. Early versus delayed invasive intervention in acute coronary syndromes. N Engl J Med. 2009;360:2165–75.

[331] Kofoed KF, Kelbæk H, Hansen PR, Torp-Pedersen C, Høfsten D, Kløvgaard L, et al. Early versus standard care invasive examination and treatment of patients with non-ST-segment elevation acute coronary syndrome. Circulation. 2018;138:2741–50.

[332] Kite TA, Kurmani SA, Bountziouka V, Cooper NJ, Lock ST, Gale CP, et al. Timing of invasive strategy in non-ST-elevation acute coronary syndrome: a meta-analysis of randomized controlled trials Eur Heart J. 2022;43:3148–61.

[333] Jobs A, Mehta SR, Montalescot G, Vicaut E, Van't Hof AWJ, Badings EA, et al. Optimal timing of an invasive strategy in patients with non-ST-elevation acute coronary syndrome: a meta-analysis of randomised trials. Lancet. 2017;390:737–46.

[334] Stone GW, Christiansen EH, Ali ZA, Andreasen LN, Maehara A, Ahmad Y, et al. Intravascular imaging-guided coronary drug-eluting stent implantation: an updated network meta-analysis. Lancet. 2024;403:824–37.

[335] Kuno T, Kiyohara Y, Maehara A, Ueyama HA, Kampaktsis PN, Takagi H, et al. Comparison of Intravascular Imaging, Functional, or Angiographically Guided Coronary Intervention. J Am Coll Cardiol. 2023;82:2167–76.

[336] Stehli J, Duffy SJ, Koh Y, Martin C, Brennan A, Dinh DT, et al. Sex differences in radial access for percutaneous coronary intervention in acute coronary syndrome are independent of body size. Heart Lung Circ. 2021;30:108–14.

[337] Tegn N, Abdelnoor M, Aaberge L, Endresen K, Smith P, Aakhus S, et al. Invasive versus conservative strategy in patients aged 80 years or older with non-ST-elevation myocardial infarction or unstable angina pectoris (After Eighty study): an open-label randomised controlled trial. Lancet. 2016;387:1057–65.

[338] Savonitto S, Cavallini C, Petronio AS, Murena E, Antonicelli R, Sacco A, et al. Early aggressive versus initially conservative treatment in elderly patients with non-ST-segment elevation acute coronary syndrome: a randomized controlled trial. JACC: Cardiovasc Imaging. 2012;5:906–16.

[339] Sanchis J, Núñez E, Barrabés JA, Marín F, Consuegra-Sánchez L, Ventura S, et al. Randomized comparison between the invasive and conservative strategies in comorbid elderly patients with non-ST elevation myocardial infarction. Eur J Intern Med. 2016;35:89–94.

[340] de Belder A, Myat A, Blaxill J, Haworth P, O'Kane PD, Hatrick R, et al. Revascularisation or medical therapy in elderly patients with acute anginal syndromes: the RINCAL randomised trial. EuroIntervention. 2021;17:67–74.

[341] Hirlekar G, Libungan B, Karlsson T, Bäck M, Herlitz J, Albertsson P. Percutaneous coronary intervention in the very elderly with NSTE-ACS: the randomized 80+ study. Scand Cardiovasc J. 2020;54:315–21.

[342] Mills GB, Ratcovich H, Adams-Hall J, Beska B, Kirkup E, Raharjo DE, et al. Is the contemporary care of the older persons with acute coronary syndrome evidence-based? Eur Heart J Open. 2022;2:oeab044.

[343] Biscaglia S, Guiducci V, Escaned J, Moreno R, Lanzilotti V, Santarelli A, et al. Complete or culprit-only PCI in older patients with myocardial infarction. N Engl J Med. 2023;389:889–98.

[344] Kaura A, Sterne J, Trickey A, Abbott S, Mulla A, Glampson B, et al. Invasive versus non-invasive management of older patients with non-ST elevation myocardial infarction (SENIOR-NSTEMI): a cohort study based on routine clinical data. Lancet. 2020;396:623–34.

[345] Gnanenthiran SR, Kritharides L, D'Souza M, Lowe HC, Brieger DB. Revascularisation compared with initial medical therapy for non-ST-elevation acute coronary syndromes in the elderly: a meta-analysis. Heart. 2017;103:1962–9.

[346] Ma W, Liang Y, Zhu J. Early invasive versus initially conservative strategy in elderly patients older than 75 years with non-ST-elevation acute coronary syndrome: A meta-analysis. Heart Lung Circ. 2018;27:611–20.

[347] Sanchis J, Bueno H, Miñana G, Guerrero C, Martí D, Martínez-Sellés M, et al. Effect of routine invasive vs conservative strategy in older adults with frailty and non–ST-segment elevation acute myocardial infarction: a randomized clinical trial. JAMA Intern Med. 2023;183:407–15.

[348] Lopez D, Katzenellenbogen JM, Sanfilippo FM, Woods JA, Hobbs MS, Knuiman MW, et al. Transfers to metropolitan hospitals and coronary angiography for rural Aboriginal and non-Aboriginal patients with acute ischaemic heart disease in Western Australia. BMC Cardiovasc Disord. 2014;14:58.

[349] ISIS-2 (Second International Study of Infarct Survival) Collaborative group. Randmomised trial of intravenous strektokinase, oral, aspirin, both, or neither among 17,187 cases of syspected acute myocardial infarctionL ISIS-2. Lancet. 1988;2:349–60.

350

[350] Mehta SR, Bassand JP, Chrolavicius S, Diaz R, Eikelboom JW, Fox KA, et al. Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. N Engl J Med. 2010;363:930–42.

[351] Hamilos M, Kanakakis J, Anastasiou I, Karvounis C, Vasilikos V, Goudevenos J, et al. Ticagrelor versus clopidogrel in patients with STEMI treated with thrombolysis: the MIRTOS trial. EuroIntervention. 2021;16:1163–9.

[352] Berwanger O, Nicolau JC, Carvalho AC, Jiang L, Goodman SG, Nicholls SJ, et al. Ticagrelor vs Clopidogrel after fibrinolytic therapy in patients with ST-elevation myocardial infarction: a randomized clinical trial. JAMA Cardiol. 2018;3:391–9.

[353] Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–15.

[354] Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045–57.

[355] Chen ZM, Jiang LX, Chen YP, Xie JX, Pan HC, Peto R, et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet. 2005;366:1607–21.

[356] Sabatine MS, Cannon CP, Gibson CM, López-Sendón JL, Montalescot G, Theroux P, et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N Engl J Med. 2005;352:1179–89.

[357] Montalescot G, Bolognese L, Dudek D, Goldstein P, Hamm C, Tanguay JF, et al. Pretreatment with prasugrel in non-ST-segment elevation acute coronary syndromes. N Engl J Med. 2013;369:999–1010.

[358] Dworeck C, Redfors B, Angerås O, Haraldsson I, Odenstedt J, Ioanes D, et al. Association of pretreatment with P2Y12 receptor antagonists preceding percutaneous coronary intervention in non-ST-segment elevation acute coronary syndromes with outcomes. JAMA Netw Open. 2020;3:e2018735.

[359] Gewehr DM, Carvalho PEdP, Dagostin CS, Cardoso R, Kubrusly TBL, Kubrusly FB, et al. Pretreatment with P2Y12 inhibitors in ST-elevation myocardial infarction: A systematic review and meta-analysis. Catheter Cardiovasc Interv. 2023;102:200–11.

[360] Claassens DMF, Vos GJA, Bergmeijer TO, Hermanides RS, van ’t Hof AWJ, van der Harst P, et al. A genotype-guided strategy for oral P2Y12 inhibitors in primary PCI. N Engl J Med. 2019;381:1621–31.

[361] Sibbing D, Aradi D, Jacobshagen C, Gross L, Trenk D, Geisler T, et al. Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial. Lancet. 2017;390:1747–57.

[362] Pereira NL, Farkouh ME, So D, Lennon R, Geller N, Mathew V, et al. Effect of genotype-guided oral P2Y12 inhibitor selection vs conventional clopidogrel therapy on ischemic outcomes after percutaneous coronary intervention: the TAILOR-PCI randomized clinical trial. JAMA. 2020;324:761–71.

[363] O'Donoghue ML, Marston NA. Time for a paradigm shift? Making the case for tailored selection of antiplatelet therapy. Eur Heart J. 2022;43:968–70.

[364] Galli M, Benenati S, Franchi F, Rollini F, Capodanno D, Biondi-Zoccai G, et al. Comparative effects of guided vs. potent P2Y12 inhibitor therapy in acute coronary syndrome: a network meta-analysis of 61 898 patients from 15 randomized trials. Eur Heart J. 2022;43:959–67.

[365] Kim CJ, Park M-W, Kim MC, Choo E-H, Hwang B-H, Lee KY, et al. Unguided de-escalation from ticagrelor to clopidogrel in stabilised patients with acute myocardial infarction undergoing percutaneous coronary intervention (TALOS-AMI): an investigator-initiated, open-label, multicentre, non-inferiority, randomised trial. Lancet. 2021;398:1305–16.

[366] Kim H-S, Kang J, Hwang D, Han J-K, Yang H-M, Kang H-J, et al. Prasugrel-based de-escalation of dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (HOST-REDUCE-POLYTECH-ACS): an open-label, multicentre, non-inferiority randomised trial. Lancet. 2020;396:1079–89.

[367] Cuisset T, Deharo P, Quilici J, Johnson TW, Deffarges S, Bassez C, et al. Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study. Eur Heart J. 2017;38:3070–8.

[368] Jeong Y-H. “East asian paradox”: Challenge for the current antiplatelet strategy of “one-guideline-fits-all races” in acute coronary syndrome. Curr Cardiol Rep. 2014;16:485.

[369] Cannon CP, Bhatt DL, Oldgren J, Lip GYH, Ellis SG, Kimura T, et al. Dual antithrombotic therapy with dabigatran after PCI in atrial fibrillation. N Engl J Med. 2017;377:1513–24.

[370] Gibson CM, Mehran R, Bode C, Halperin J, Verheugt FW, Wildgoose P, et al. Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N Engl J Med. 2016;375:2423–34.

[371] Lopes RD, Heizer G, Aronson R, Vora AN, Massaro T, Mehran R, et al. Antithrombotic therapy after acute coronary syndrome or PCI in atrial fibrillation. N Engl J Med. 2019;380:1509–24.

[372] Park DY, Wang P, An S, Grimshaw AA, Frampton J, Ohman EM, et al. Shortening the duration of dual antiplatelet therapy after percutaneous coronary intervention for acute coronary syndrome: a systematic review and meta-analysis. Am Heart J. 2022;251:101–14.

[373] ten Berg JM, van 't Hof AW, Dill T, Heestermans T, van Werkum JW, Mosterd A, et al. Effect of early, pre-hospital initiation of high bolus dose tirofiban in patients with ST-segment elevation myocardial infarction on short- and long-term clinical outcome. J Am Coll Cardiol. 2010;55:2446–55.

[374] Ellis SG, Tendera M, de Belder MA, van Boven AJ, Widimsky P, Janssens L, et al. Facilitated PCI in patients with ST-elevation myocardial infarction. N Engl J Med. 2008;358:2205–17.

[375] Akpek M, Sahin O, Sarli B, Baktir AO, Saglam H, Urkmez S, et al. Acute effects of intracoronary tirofiban on no-reflow phenomena in patients with st-segment elevated myocardial infarction undergoing primary percutaneous coronary intervention. Angiology. 2014;66:560–7.

[376] Friedland S, Eisenberg MJ, Shimony A. Meta-analysis of randomized controlled trials of intracoronary versus intravenous administration of glycoprotein IIb/IIIa inhibitors during percutaneous coronary intervention for acute coronary syndrome. Am J Cardiol. 2011;108:1244–51.

[377] Tricoci P, Newby LK, Hasselblad V, Kong DF, Giugliano RP, White HD, et al. Upstream use of small-molecule glycoprotein iib/iiia inhibitors in patients with non-ST-segment elevation acute coronary syndromes: a systematic overview of randomized clinical trials. Circ Cardiovasc Qual Outcomes. 2011;4:448–58.

[378] Giugliano RP, White JA, Bode C, Armstrong PW, Montalescot G, Lewis BS, et al. Early versus delayed, provisional Eptifibatide in acute coronary syndromes. N Engl J Med. 2009;360:2176–90.

[379] Roffi M, Chew DP, Mukherjee D, Bhatt DL, White JA, Moliterno DJ, et al. Platelet glycoprotein IIb/IIIa inhibition in acute coronary syndromes. Gradient of benefit related to the revascularization strategy. Eur Heart J. 2002;23:1441–8.

[380] Rossini R, Iorio A, Pozzi R, Bianco M, Musumeci G, Leonardi S, et al. Aspirin desensitization in patients with coronary artery disease. Circ Cardiovasc Interv. 2017;10:e004368.

[381] Dyke CM, Bhatia D, Lorenz TJ, Marso SP, Tardiff BE, Hogeboom C, et al. Immediate coronary artery bypass surgery after platelet inhibition with eptifibatide: results from PURSUIT. Ann Thor Surg. 2000;70:866–71.

[382] Bizzarri F, Scolletta S, Tucci E, Lucidi M, Davoli G, Toscano T, et al. Perioperative use of tirofiban hydrochloride (Aggrastat) does not increase surgical bleeding after emergency or urgent coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2001;122:1181–5.

[383] Lincoff AM, LeNarz LA, Despotis GJ, Smith PK, Booth JE, Raymond RE, et al. Abciximab and bleeding during coronary surgery: results from the EPILOG and EPISTENT trials. Ann Thor Surg. 2000;70:516–26.

[384] GUSTO investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med. 1993;329:673–82.

[385] Assessment of the Safety and Efficacy of a New Thrombolytic Regimen (ASSENT)-3 Investigators. Efficacy and safety of tenecteplase in combination with enoxaparin, abciximab, or unfractionated heparin: the ASSENT-3 randomised trial in acute myocardial infarction. Lancet. 2001;358:605–13.

[386] Cavender MA, Sabatine MS. Bivalirudin versus heparin in patients planned for percutaneous coronary intervention: a meta-analysis of randomised controlled trials. Lancet. 2014;384:599–606.

[387] Capodanno D, Gargiulo G, Capranzano P, Mehran R, Tamburino C, Stone GW. Bivalirudin versus heparin with or without glycoprotein IIb/IIIa inhibitors in patients with STEMI undergoing primary PCI: an updated meta-analysis of 10,350 patients from five randomized clinical trials. Eur Heart J Acute Cardiovasc Care. 2016;5:253–62.

[388] Li Y, Liang Z, Qin L, Wang M, Wang X, Zhang H, et al. Bivalirudin plus a high-dose infusion versus heparin monotherapy in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a randomised trial. Lancet. 2022;400:1847–57.

[389] The RISC Group. Risk of myocardial infarction and death during treatment with low dose aspirin and intravenous heparin in men with unstable coronary artery disease. Lancet. 1990;336:827–30.

[390] Telford AM, Wilson C. Trial of heparin versus atenolol in prevention of myocardial infarction in intermediate coronary syndrome. Lancet. 1981;1:1225–8.

[391] Théroux P, Ouimet H, McCans J, Latour JG, Joly P, Lévy G, et al. Aspirin, heparin, or both to treat acute unstable angina. N Engl J Med. 1988;319:1105–11.

[392] Galli M, Andreotti F, D’Amario D, Vergallo R, Vescovo GM, Giraldi L, et al. Antithrombotic therapy in the early phase of non-ST-elevation acute coronary syndromes: a systematic review and meta-analysis. Eur Heart J Cardiovasc Pharmacother. 2019;6:43–56.

[393] SYNERGY Trial Investigators. Enoxaparin vs unfractionated heparin in high-risk patients with non–ST-segment elevation acute coronary syndromes managed with an intended early invasive strategy primary results of the SYNERGY randomized trial. JAMA. 2004;292:45–54.

[394] Nührenberg TG, Hochholzer W, Mashayekhi K, Ferenc M, Neumann FJ. Efficacy and safety of bivalirudin for percutaneous coronary intervention in acute coronary syndromes: a meta-analysis of randomized-controlled trials. Clin Res Cardiol. 2018;107:807–15.

[395] Dagenais GR, Pogue J, Fox K, Simoons ML, Yusuf S. Angiotensin-converting-enzyme inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: a combined analysis of three trials. Lancet. 2006;368:581–8.

[396] Antman EM, Morrow DA, McCabe CH, Murphy SA, Ruda M, Sadowski Z, et al. Enoxaparin versus unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction. N Engl J Med. 2006;354:1477–88.

[397] Fox KAA, Antman EM, Montalescot G, Agewall S, SomaRaju B, Verheugt FWA, et al. The impact of renal dysfunction on outcomes in the ExTRACT-TIMI 25 trial. J Am Coll Cardiol. 2007;49:2249–55.

[398] Fahrni G, Wolfrum M, De Maria GL, Banning AP, Benedetto U, Kharbanda RK. Prolonged high-dose bivalirudin infusion reduces major bleeding without increasing stent thrombosis in patients undergoing primary percutaneous coronary intervention: Novel insights from an updated meta-analysis. J Am Heart Assoc. 2016;5:e003515.

[399] Yusuf S, Mehta SR, Chrolavicius S, Afzal R, Pogue J, Granger CB, et al. Comparison of fondaparinux and enoxaparin in acute coronary syndromes. N Engl J Med. 2006;354:1464–76.

400

[400] Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001;345:494–502.

[401] Brieger D, Solanki V, Gaynor M, Booth V, MacDonald R, Freedman SB. Optimal strategy for administering enoxaparin to patients undergoing coronary angiography without angioplasty for acute coronary syndromes. Am J Cardiol. 2002;89:1167–70.

[402] Angiolillo DJ, Bhatt DL, Cannon CP, Eikelboom JW, Gibson CM, Goodman SG, et al. Antithrombotic therapy in patients with atrial fibrillation treated with oral anticoagulation undergoing percutaneous coronary intervention: a North American perspective: 2021 update. Circulation. 2021;143:583–96.

[403] Karam N, Bataille S, Marijon E, Tafflet M, Benamer H, Caussin C, et al. Incidence, mortality, and outcome-predictors of sudden cardiac arrest complicating myocardial infarction prior to hospital admission. Circ Cardiovasc Genet. 2019;12:e007081.

[404] Garot P, Lefevre T, Eltchaninoff H, Morice M-C, Tamion F, Abry B, et al. Six-month outcome of emergency percutaneous coronary intervention in resuscitated patients after cardiac arrest complicating ST-elevation myocardial infarction. Circulation. 2007;115:1354–62.

[405] Kern KB, Rahman O. Emergent percutaneous coronary intervention for resuscitated victims of out-of-hospital cardiac arrest. Catheter Cardiovasc Interv. 2010;75:616–24.

[406] Dumas F, Cariou A, Manzo-Silberman S, Grimaldi D, Vivien B, Rosencher J, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest. Circ Cardiovasc Genet. 2010;3:200–7.

[407] Hamed M, Neupane G, Abdelsalam M, Elkhawas I, Morsy M, Khalili H, et al. Meta-analysis on early versus delayed coronary angiography for patients with out-of-hospital cardiac arrest without ST-elevation myocardial infarction. Am J Cardiol. 2023;188:41–3.

[408] Böttiger BW, Arntz H-R, Chamberlain DA, Bluhmki E, Belmans A, Danays T, et al. Thrombolysis during resuscitation for out-of-hospital cardiac arrest. N Engl J Med. 2008;359:2651–62.

[409] Hirt LS, Kandan SR, Rahbi H, Dastidar A, Khawaja MZ, Mozid A, et al. Three factors combined predict futility of emergency coronary angiography after out-of-hospital cardiac arrest. J Am Coll Cardiol. 2018;72:1753–5.

[410] Thiele H, Akin I, Sandri M, Fuernau G, de Waha S, Meyer-Saraei R, et al. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med. 2017;377:2419–32.

[411] Thiele H, Akin I, Sandri M, de Waha-Thiele S, Meyer-Saraei R, Fuernau G, et al. One-year outcomes after PCI strategies in cardiogenic shock. N Engl J Med. 2018;379:1699–710.

[412] Kolte D, Sardar P, Khera S, Zeymer U, Thiele H, Hochadel M, et al. Culprit vessel-only versus multivessel percutaneous coronary intervention in patients with cardiogenic shock complicating ST-segment–elevation myocardial infarction. Circ Cardiovasc Genet. 2017;10:e005582.

[413] Thiele H, Zeymer U, Neumann F-J, Ferenc M, Olbrich H-G, Hausleiter J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367:1287–96.

[414] Patel MR, Smalling RW, Thiele H, Barnhart HX, Zhou Y, Chandra P, et al. Intra-aortic balloon counterpulsation and infarct size in patients with acute anterior myocardial infarction without shock: the CRISP AMI randomized trial. JAMA. 2011;306:1329–37.

[415] Sjauw KD, Engström AE, Vis MM, van der Schaaf RJ, Baan J, Jr., Koch KT, et al. A systematic review and meta-analysis of intra-aortic balloon pump therapy in ST-elevation myocardial infarction: should we change the guidelines? Eur Heart J. 2009;30:459–68.

[416] Thiele H, Zeymer U, Akin I, Behnes M, Rassaf T, Mahabadi AA, et al. Extracorporeal life support in infarct-related cardiogenic shock. N Engl J Med. 2023;389:1286–97.

[417] Zeymer U, Freund A, Hochadel M, Ostadal P, Belohlavek J, Rokyta R, et al. Venoarterial extracorporeal membrane oxygenation in patients with infarct-related cardiogenic shock: an individual patient data meta-analysis of randomised trials. Lancet. 2023;402:1338–46.

[418] Møller JE, Engstrøm T, Jensen LO, Eiskjær H, Mangner N, Polzin A, et al. Microaxial flow pump or standard care in infarct-related cardiogenic shock. N Engl J Med. 2024;390:1382–93.

[419] Vallabhajosyula S, Verghese D, Bell MR, Murphree DH, Cheungpasitporn W, Miller PE, et al. Fibrinolysis vs. primary percutaneous coronary intervention for ST-segment elevation myocardial infarction cardiogenic shock. ESC Heart Fail. 2021;8:2025–35.

[420] Politi L, Sgura F, Rossi R, Monopoli D, Guerri E, Leuzzi C, et al. A randomised trial of target-vessel versus multi-vessel revascularisation in ST-elevation myocardial infarction: major adverse cardiac events during long-term follow-up. Heart. 2010;96:662.

[421] Gershlick AH, Khan JN, Kelly DJ, Greenwood JP, Sasikaran T, Curzen N, et al. Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: The CvLPRIT Trial. J Am Coll Cardiol. 2015;65:963–72.

[422] Mehta SR, Wood DA, Storey RF, Mehran R, Bainey KR, Nguyen H, et al. Complete revascularization with multivessel PCI for myocardial infarction. N Engl J Med. 2019;381:1411–21.

[423] Dambrink J-HE, Debrauwere JP, van 't Hof AWJ, Ottervanger J-P, Gosselink ATM, Hoorntje JCA, et al. Non-culprit lesions detected during primary PCI: treat invasively or follow the guidelines? EuroIntervention. 2010;5:968–75.

[424] Carlo DM, Mara S, Flavio A, Imad S, Antonio M, Anna P, et al. Single vs multivessel treatment during primary angioplasty: results of the multicentre randomised HEpacoat™ for cuLPrit or multivessel stenting for Acute Myocardial Infarction (HELP AMI) Study. Int J Cardiovasc Intervent. 2004;6:128–33.

[425] Hamza M, Mahmoud AN, Elgendy IY. A randomized trial of complete versus culprit-only revascularization during primary percutaneous coronary intervention in diabetic patients with acute ST elevation myocardial infarction and multi vessel disease. J Interv Cardiol. 2016;29:241–7.

[426] Damian JK, Gerald PM, Daniel JB, Nicholas PC, Miles D, John PG, et al. Complete Versus culprit-Lesion only PRimary PCI Trial (CVLPRIT): a multicentre trial testing management strategies when multivessel disease is detected at the time of primary PCI: rationale and design. EuroIntervention. 2013;8:1190–8.

[427] McCann GP, Khan JN, Greenwood JP, Nazir S, Dalby M, Curzen N, et al. Complete versus lesion-only primary PCI: the randomized cardiovascular MR CvLPRIT substudy. J Am Coll Cardiol. 2015;66:2713–24.

[428] Sadjadieh G, Engstrøm T, Helqvist S, Hofsten DE, Køber L, Pedersen F, et al. Bleeding episodes in “complete, staged” versus “culprit only” revascularisation in patients with multivessel disease and ST-segment elevation myocardial infarction: a DANAMI-3-PRIMULTI substudy. EuroIntervention. 2016;12:1231–8.

[429] Smits PC, Abdel-Wahab M, Neumann F-J, Boxma-de Klerk BM, Lunde K, Schotborgh CE, et al. Fractional flow reserve–guided multivessel angioplasty in myocardial infarction. N Engl J Med. 2017;376:1234–44.

[430] Wald DS, Morris JK, Wald NJ, Chase AJ, Edwards RJ, Hughes LO, et al. Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med. 2013;369:1115–23.

[431] Manoharan G, Belardi JA, Du Z, Lee MS, Qiao S, Serruys PW, et al. Comparison of clinical outcomes after multivessel versus single-vessel stenting with the zotarolimus-eluting stent in the RESOLUTE Global Clinical Trial Program. EuroIntervention. 2017;12:1605–13.

[432] Bainey KR, Engstrøm T, Smits PC, Gershlick AH, James SK, Storey RF, et al. Complete vs culprit-lesion-only revascularization for ST-segment elevation myocardial infarction: A systematic review and meta-analysis. JAMA Cardiol. 2020;5:881–8.

[433] Stähli BE, Varbella F, Linke A, Schwarz B, Felix SB, Seiffert M, et al. Timing of complete revascularization with multivessel pci for myocardial infarction. N Engl J Med. 2023;389:1368–79.

[434] Siebert VR, Borgaonkar S, Jia X, Nguyen HL, Birnbaum Y, Lakkis NM, et al. Meta-analysis comparing multivessel versus culprit coronary arterial revascularization for patients with non-ST-segment elevation acute coronary syndromes. Am J Cardiol. 2019;124:1501–11.

[435] Archilletti F, Ricci F, Pelliccia F, Dangas G, Giuliani L, Radico F, et al. Coronary angiography- or fractional flow reserve-guided complete revascularization in multivessel disease STEMI: A Bayesian hierarchical network meta-analysis. Int J Cardiol. 2023;370:122–8.

[436] Puymirat E, Cayla G, Simon T, Steg PG, Montalescot G, Durand-Zaleski I, et al. Multivessel PCI guided by FFR or angiography for myocardial infarction. N Engl J Med. 2021;385:297–308.

[437] Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, et al. Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS–NSTEMI randomized trial. Eur Heart J. 2015;36:100–11.

[438] Ntalianis A, Sels J-W, Davidavicius G, Tanaka N, Muller O, Trana C, et al. Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC: Cardiovasc Interv. 2010;3:1274–81.

[439] Lee JM, Kim HK, Park KH, Choo EH, Kim CJ, Lee SH, et al. Fractional flow reserve versus angiography-guided strategy in acute myocardial infarction with multivessel disease: a randomized trial. Eur Heart J. 2022;44:473–84.

[440] Yousef S, Sultan I, VonVille HM, Kahru K, Arnaoutakis GJ. Surgical management for mechanical complications of acute myocardial infarction: a systematic review of long-term outcomes. Ann Cardiothorac Surg. 2022;11:239–51.

[441] Chevalier P, Burri H, Fahrat F, Cucherat M, Jegaden O, Obadia J-F, et al. Perioperative outcome and long-term survival of surgery for acute post-infarction mitral regurgitation. Eur J Cardiothorac Surg. 2004;26:330–5.

[442] Kirov H, Caldonazo T, Rahouma M, Robinson NB, Demetres M, Serruys PW, et al. A systematic review and meta-analysis of percutaneous coronary intervention compared to coronary artery bypass grafting in non-ST-elevation acute coronary syndrome. Sci Rep. 2022;12:5138.

[443] Hadaya J, Sanaiha Y, Tran Z, Downey P, Shemin RJ, Benharash P. Timing of coronary artery bypass grafting in acute coronary syndrome: a national analysis. Ann Thor Surg. 2022;113:1482–90.

[444] Hayes SN, Kim ESH, Saw J, Adlam D, Arslanian-Engoren C, Economy KE, et al. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation. 2018;137:e523–57.

[445] Fahey JK, Chew A, Ihdayhid AR, Rashid HN, Zaman S, Nicholls SJ, et al. Women with spontaneous coronary artery dissection are at increased risk of iatrogenic coronary artery dissection. Heart Lung Circ. 2020;30:e23–8.

[446] Hassan S, Samuel R, Starovoytov A, Lee C, Aymong E, Saw J. Outcomes of percutaneous coronary intervention in patients with spontaneous coronary artery dissection. J Interv Cardiol. 2021;2021:6686230.

[447] Kotecha D, Garcia-Guimaraes M, Premawardhana D, Pellegrini D, Oliver-Williams C, Bountziouka V, et al. Risks and benefits of percutaneous coronary intervention in spontaneous coronary artery dissection. Heart. 2021;107:1398.

[448] Tweet MS, Eleid MF, Best PJM, Lennon RJ, Lerman A, Rihal CS, et al. Spontaneous coronary artery dissection. Circ Cardiovasc Interv. 2014;7:777–86.

[449] Lobo AS, Cantu SM, Sharkey SW, Grey EZ, Storey K, Witt D, et al. Revascularization in patients with spontaneous coronary artery dissection and ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2019;74:1290–300.

450

[450] Jamil A, Tajrishi FZ, Kahe F, Najafi H, Montazerin SM, Shojaei F, et al. Spontaneous coronary artery dissection managed with a conservative or revascularization approach: a meta-analysis. J Cardiovasc Med. 2020;21:42–50.

[451] Reynolds HR, Maehara A, Kwong RY, Sedlak T, Saw J, Smilowitz NR, et al. Coronary optical coherence tomography and cardiac magnetic resonance imaging to determine underlying causes of myocardial infarction with nonobstructive coronary arteries in women. Circulation. 2021;143:624–40.

[452] Byrne RA, Rossello X, Coughlan JJ, Barbato E, Berry C, Chieffo A, et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J. 2023;44:3720–826.

[453] White K, Kinarivala M, Scott I. Diagnostic features, management and prognosis of type 2 myocardial infarction compared to type 1 myocardial infarction: a systematic review and meta-analysis. BMJ Open. 2022;12:e055755.

[454] Atherton JJ, Sindone A, De Pasquale CG, Driscoll A, MacDonald PS, Hopper I, et al. National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand: guidelines for the prevention, detection, and management of heart failure in Australia 2018. Heart Lung Circ. 2018;27:1123–208.

[455] Sandau KE, Funk M, Auerbach A, Barsness GW, Blum K, Cvach M, et al. Update to practice standards for electrocardiographic monitoring in hospital settings: a scientific statement from the American Heart Association. Circulation. 2017;136:e273–344.

[456] Shue McGuffin K, Ortiz S. Daily electrocardiogram electrode change and the effect on frequency of nuisance alarms. Dimens Crit Care Nurs. 2019;38:187–91.

[457] Walsh-Irwin C, Jurgens CY. Proper skin preparation and electrode placement decreases alarms on a telemetry unit. Dimens Crit Care Nurs. 2015;34:134–9.

[458] Dibben GO, Faulkner J, Oldridge N, Rees K, Thompson DR, Zwisler AD, et al. Exercise-based cardiac rehabilitation for coronary heart disease: a meta-analysis. Eur Heart J. 2023;44:452–69.

[459] Yudi MB, Farouque O, Andrianopoulos N, Ajani AE, Kalten K, Brennan AL, et al. The prognostic significance of smoking cessation after acute coronary syndromes: an observational, multicentre study from the Melbourne interventional group registry. BMJ Open. 2017;7:e016874.

[460] McDonagh STJ, Dalal H, Moore S, Clark CE, Dean SG, Jolly K, et al. Home‐based versus centre‐based cardiac rehabilitation. Cochrane Database Syst Rev. 2023;10:CD007130.

[461] Chow CK, Jolly S, Rao-Melacini P, Fox KA, Anand SS, Yusuf S. Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes. Circulation. 2010;121:750–8.

[462] Wu AD, Lindson N, Hartmann-Boyce J, Wahedi A, Hajizadeh A, Theodoulou A, et al. Smoking cessation for secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2022;8:CD014936.

[463] Kevin C, Nicola I, Jan K, Robin PC. Evidence of poor adherence to secondary prevention after acute coronary syndromes: possible remedies through the application of new technologies. Open Heart. 2015;2:e000166.

[464] Brieger D, D'Souza M, Hyun K, Weaver JC, Kritharides L. Intensive lipid-lowering therapy in the 12 months after an acute coronary syndrome in Australia: an observational analysis. Med J Aust. 2019;210:80–5.

[465] Redfern J, Hyun K, Chew DP, Astley C, Chow C, Aliprandi-Costa B, et al. Prescription of secondary prevention medications, lifestyle advice, and referral to rehabilitation among acute coronary syndrome inpatients: results from a large prospective audit in Australia and New Zealand. Heart. 2014;100:1281–8.

[466] Brieger D, Chow C, Gullick J, Hyun K, D'Souza M, Briffa T, et al. Improving patient adherence to secondary prevention medications 6 months after an acute coronary syndrome: observational cohort study. Intern Med J. 2018;48:541–9.

[467] Verdicchio C, Freene N, Hollings M, Maiorana A, Briffa T, Gallagher R, et al. A clinical guide for assessment and prescription of exercise and physical activity in cardiac rehabilitation. A CSANZ position statement. Heart Lung Circ. 2023;32:1035–48.

[468] Castellanos LR, Viramontes O, Bains NK, Zepeda IA. Disparities in cardiac rehabilitation among individuals from racial and ethnic groups and rural communities—a systematic review. J Racial Ethn Health Disparities. 2019;6:1–11.

[469] Smith M, Orchard J, La Gerche A, Gallagher R, Fitzpatrick J. Fit, female or fifty-is cardiac rehabilitation "fit" for purpose for all? A systematic review and meta-analysis with meta-regression. Front Cardiovasc Med. 2022;9:764882.

[470] Thomas EE, Cartledge S, Murphy B, Abell B, Gallagher R, Astley C. Expanding access to telehealth in Australian cardiac rehabilitation services: a national survey of barriers, enablers, and uptake. Eur Heart J Digit Health. 2024;5:21–9.

[471] Redfern J, Maiorana A, Neubeck L, Clark AM, Briffa T. Achieving coordinated secondary prevention of coronary heart disease for all in need (SPAN). Int J Cardiol. 2011;146:1–3.

[472] Woodruffe S, Neubeck L, Clark RA, Gray K, Ferry C, Finan J, et al. Australian Cardiovascular Health and Rehabilitation Association (ACRA) core components of cardiovascular disease secondary prevention and cardiac rehabilitation 2014. Heart Lung Circ. 2015;24:430–41.

[473] Briffa TG, Kinsman L, Maiorana AJ, Zecchin R, Redfern J, Davidson PM, et al. An integrated and coordinated approach to preventing recurrent coronary heart disease events in Australia. Med J Aust. 2009;190:683–6.

[474] Chow CK, Redfern J, Hillis GS, Thakkar J, Santo K, Hackett ML, et al. Effect of lifestyle-focused text messaging on risk factor modification in patients with coronary heart disease: a randomized clinical trial. JAMA. 2015;314:1255–63.

[475] Pfaeffli Dale L, Whittaker R, Jiang Y, Stewart R, Rolleston A, Maddison R. Text message and internet support for coronary heart disease self-management: results from the Text4Heart randomized controlled trial. J Med Internet Res. 2015;17:e237.

[476] Varnfield M, Karunanithi M, Lee CK, Honeyman E, Arnold D, Ding H, et al. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial. Heart. 2014;100:1770–9.

[477] World Health Organization. Classification of digital health interventions v1.0. 2018. Available at iris.who.int/bitstream/handle/10665/260480/WHO-RHR-18.06-eng.pdf [accessed 1 December 2024].

[478] Tromp J, Jindal D, Redfern J, Bhatt A, Severin T, Banerjee A, et al. World Heart Federation Roadmap for digital health in cardiology. Global Heart. 2022;17:61.

[479] Murphy BM, Higgins RO, Jackson AC. Incidence and impacts of post-cardiac event mental health problems. Aust J Gen Pract. 2023;52:781–6.

[480] Black Dog Institute. Education & services: Health professionals. Available at www.blackdoginstitute.org.au/education-services/health-professionals/ [accessed 1 December 2024].

[481] Beyond Blue. Available at www.beyondblue.org.au/ [accessed 1 December 2024].

[482] Pharmaceutical Society of Australia. Guidelines for comprehensive medication management reviews. 2020. Available at www.ppaonline.com.au/wp-content/uploads/2020/04/PSA-Guidelines-for-Comprehensive-Medication-Management-Reviews.pdf.

[483] Frobert O, Gotberg M, Erlinge D, Akhtar Z, Christiansen EH, MacIntyre CR, et al. Influenza vaccination after myocardial infarction: a randomized, double-blind, placebo-controlled, multicenter trial. Circulation. 2021;144:1476–84.

[484] Yedlapati SH, Khan SU, Talluri S, Lone AN, Khan MZ, Khan MS, et al. Effects of influenza vaccine on mortality and cardiovascular outcomes in patients with cardiovascular disease: A systematic review and meta-analysis. J Am Heart Assoc. 2021;10:e019636.

[485] Australian Technical Advisory Group on Immunisation (ATAGI). Australian Immunisation Handbook. 2022. Available at immunisationhandbook.health.gov.au/ [accessed 16 August 2024].

[486] Rodriguez F, Harrington RA. Management of antithrombotic therapy after acute coronary syndromes. N Engl J Med. 2021;384:452–60.

[487] Elliott J, Kelly SE, Bai Z, Skidmore B, Boucher M, So D, et al. Extended dual antiplatelet therapy following percutaneous coronary intervention in clinically important patient subgroups: a systematic review and meta-analysis. CMAJ Open. 2023;11:E118–30.

[488] Bonaca MP, Bhatt DL, Cohen M, Steg PG, Storey RF, Jensen EC, et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med. 2015;372:1791–800.

[489] Benenati S, Crimi G, Canale C, Pescetelli F, De Marzo V, Vergallo R, et al. Duration of dual antiplatelet therapy and subsequent monotherapy type in patients undergoing drug-eluting stent implantation: a network meta-analysis. Eur Heart J Cardiovasc Pharmacother. 2022;8:56–64.

[490] Benenati S, Galli M, De Marzo V, Pescetelli F, Toma M, Andreotti F, et al. Very short vs. long dual antiplatelet therapy after second generation drug-eluting stents in 35 785 patients undergoing percutaneous coronary interventions: a meta-analysis of randomized controlled trials. Eur Heart J Cardiovasc Pharmacother. 2021;7:86–93.

[491] Costa F, van Klaveren D, James S, Heg D, Raber L, Feres F, et al. Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of individual-patient datasets from clinical trials. Lancet. 2017;389:1025–34.

[492] Kawashima H, Gao C, Takahashi K, Tomaniak M, Ono M, Hara H, et al. Comparative assessment of predictive performance of PRECISE-DAPT, CRUSADE, and ACUITY scores in risk stratifying 30-day bleeding events. Thromb Haemost. 2020;120:1087–95.

[493] Garg A, Rout A, Farhan S, Waxman S, Giustino G, Tayal R, et al. Dual antiplatelet therapy duration after percutaneous coronary intervention using drug eluting stents in high bleeding risk patients: a systematic review and meta-analysis. Am Heart J. 2022;250:1–10.

[494] Costa F, Montalto C, Branca M, Hong SJ, Watanabe H, Franzone A, et al. Dual antiplatelet therapy duration after percutaneous coronary intervention in high bleeding risk: a meta-analysis of randomized trials. Eur Heart J. 2023;44:954–68.

[495] Andò G, De Santis GA, Greco A, Pistelli L, Francaviglia B, Capodanno D, et al. P2Y12 inhibitor or aspirin following dual antiplatelet therapy after percutaneous coronary intervention: A network meta-analysis. JACC: Cardiovasc Interv. 2022;15:2239–49.

[496] Aggarwal D, Bhatia K, Chunawala ZS, Furtado RHM, Mukherjee D, Dixon SR, et al. P2Y(12) inhibitor versus aspirin monotherapy for secondary prevention of cardiovascular events: meta-analysis of randomized trials. Eur Heart J. 2022;2:oeac019.

[497] Gragnano F, Cao D, Pirondini L, Franzone A, Kim HS, von Scheidt M, et al. P2Y(12) inhibitor or aspirin monotherapy for secondary prevention of coronary events. J Am Coll Cardiol. 2023;82:89–105.

[498] Lopes RD, Hong H, Harskamp RE, Bhatt DL, Mehran R, Cannon CP, et al. Optimal antithrombotic regimens for patients with atrial fibrillation undergoing percutaneous coronary intervention: An updated network meta-analysis. JAMA Cardiol. 2020;5:582–9.

[499] Galli M, Andreotti F, Porto I, Crea F. Intracranial haemorrhages vs. stent thromboses with direct oral anticoagulant plus single antiplatelet agent or triple antithrombotic therapy: a meta-analysis of randomized trials in atrial fibrillation and percutaneous coronary intervention/acute coronary syndrome patients. Europace. 2020;22:538–46.

500

[500] Cholesterol Treatment Trialists C. Effect of statin therapy on muscle symptoms: an individual participant data meta-analysis of large-scale, randomised, double-blind trials. Lancet. 2022;400:832–45.

[501] Lopes RD, Leonardi S, Wojdyla DM, Vora AN, Thomas L, Storey RF, et al. Stent thrombosis in patients with atrial fibrillation undergoing coronary stenting in the AUGUSTUS trial. Circulation. 2020;141:781–3.

[502] Alexander JH, Wojdyla D, Vora AN, Thomas L, Granger CB, Goodman SG, et al. Risk/benefit tradeoff of antithrombotic therapy in patients with atrial fibrillation early and late after an acute coronary syndrome or percutaneous coronary intervention: insights from AUGUSTUS. Circulation. 2020;141:1618–27.

[503] Smits PC, Frigoli E, Tijssen J, Jüni P, Vranckx P, Ozaki Y, et al. Abbreviated antiplatelet therapy in patients at high bleeding risk with or without oral anticoagulant therapy after coronary stenting: An open-label, randomized, controlled trial. Circulation. 2021;144:1196–211.

[504] Yasuda S, Kaikita K, Akao M, Ako J, Matoba T, Nakamura M, et al. Antithrombotic therapy for atrial fibrillation with stable coronary disease. N Engl J Med. 2019;381:1103–13.

[505] Urban P, Gregson J, Owen R, Mehran R, Windecker S, Valgimigli M, et al. Assessing the risks of bleeding vs thrombotic events in patients at high bleeding risk after coronary stent implantation: the ARC-high bleeding risk trade-off model. JAMA Cardiol. 2021;6:410–9.

[506] Navarese EP, Kowalewski M, Andreotti F, van Wely M, Camaro C, Kolodziejczak M, et al. Meta-analysis of time-related benefits of statin therapy in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Am J Cardiol. 2014;113:1753–64.

[507] Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.

[508] Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

[509] Mampuya WM, Frid D, Rocco M, Huang J, Brennan DM, Hazen SL, et al. Treatment strategies in patients with statin intolerance: the Cleveland Clinic experience. Am Heart J. 2013;166:597–603.

[510] Watts GF, Sullivan DR, Hare DL, Kostner KM, Horton AE, Bell DA, et al. Integrated guidance for enhancing the care of familial hypercholesterolaemia in Australia. Heart Lung Circ. 2021;30:324–49.

[511] Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.

[512] Cholesterol Treatment Trialists Collaboration, Fulcher J, O'Connell R, Voysey M, Emberson J, Blackwell L, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385:1397–405.

[513] Hay M, Stehli J, Martin C, Brennan A, Dinh DT, Lefkovits J, et al. Sex differences in optimal medical therapy following myocardial infarction according to left ventricular ejection fraction. Eur J Prev Cardiol. 2020;27:2348–50.

[514] Cholesterol Treatment Trialists Collaboration. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet. 2019;393:407–15.

[515] Bangalore S, Makani H, Radford M, Thakur K, Toklu B, Katz SD, et al. Clinical outcomes with beta-blockers for myocardial infarction: a meta-analysis of randomized trials. Am J Med. 2014;127:939–53.

[516] Martínez-Milla J, Raposeiras-Roubín S, Pascual-Figal DA, Ibáñez B. Role of beta-blockers in cardiovascular disease in 2019. Rev Esp Cardiol (Engl Ed). 2019;72:844–52.

[517] Heidenreich PA, Lee TT, Massie BM. Effect of beta-blockade on mortality in patients with heart failure: a meta-analysis of randomized clinical trials. J Am Coll Cardiol. 1997;30:27–34.

[518] Yndigegn T, Lindahl B, Mars K, Alfredsson J, Benatar J, Brandin L, et al. Beta-blockers after myocardial infarction and preserved ejection fraction. N Engl J Med. 2024;390:1372–81.

[519] Kontos MC, Diercks DB, Ho PM, Wang TY, Chen AY, Roe MT. Treatment and outcomes in patients with myocardial infarction treated with acute β-blocker therapy: results from the American College of Cardiology's NCDR(®). Am Heart J 2011;161:864–70.

[520] Zeymer U, Bueno H, Granger CB, Hochman J, Huber K, Lettino M, et al. Acute Cardiovascular Care Association position statement for the diagnosis and treatment of patients with acute myocardial infarction complicated by cardiogenic shock: A document of the Acute Cardiovascular Care Association of the European Society of Cardiology. Eur Heart J Acute Cardiovasc Care. 2020;9:183–97.

[521] Hoedemaker NP, Roolvink V, de Winter RJ, van Royen N, Fuster V, García-Ruiz JM, et al. Early intravenous beta-blockers in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: A patient-pooled meta-analysis of randomized clinical trials. Eur Heart J Acute Cardiovasc Care. 2020;9:469–77.

[522] Desta L, Khedri M, Jernberg T, Andell P, Mohammad MA, Hofman-Bang C, et al. Adherence to beta-blockers and long-term risk of heart failure and mortality after a myocardial infarction. ESC Heart Fail. 2021;8:344–55.

[523] Park CS, Yang HM, Ki YJ, Kang J, Han JK, Park KW, et al. Left ventricular ejection fraction 1 year after acute myocardial infarction identifies the benefits of the long-term use of β-blockers: Analysis of data from the KAMIR-NIH registry. Circ Cardiovasc Interv. 2021;14:e010159.

[524] Dahl Aarvik M, Sandven I, Dondo TB, Gale CP, Ruddox V, Munkhaugen J, et al. Effect of oral beta-blocker treatment on mortality in contemporary post-myocardial infarction patients: a systematic review and meta-analysis. Eur Heart J Cardiovasc Pharmacother. 2019;5:12–20.

[525] Safi S, Sethi NJ, Korang SK, Nielsen EE, Feinberg J, Gluud C, et al. Beta-blockers in patients without heart failure after myocardial infarction. Cochrane Database Syst Rev. 2021;11:CD012565.

[526] Franzosi M, Santoro E, Zuanetti G, Baigent C, Collins R, Flather M, et al. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation. 1998;97:2202–12.

[527] Bangalore S, Fakheri R, Wandel S, Toklu B, Wandel J, Messerli FH. Renin angiotensin system inhibitors for patients with stable coronary artery disease without heart failure: systematic review and meta-analysis of randomized trials. BMJ. 2017;356:j4.

[528] Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau JL, Køber L, Maggioni AP, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893–906.

[529] Pfeffer MA, Claggett B, Lewis EF, Granger CB, Kober L, Maggioni AP, et al. Angiotensin receptor-neprilysin inhibition in acute myocardial infarction. N Engl J Med. 2021;385:1845–55.

[530] Gabb GM, Mangoni AA, Anderson CS, Cowley D, Dowden JS, Golledge J, et al. Guideline for the diagnosis and management of hypertension in adults - 2016. Med J Aust. 2016;205:85–9.

[531] Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

[532] Bao YL, Gu LF, Du C, Wang YX, Wang LS. Evaluating the utility of colchicine in acute coronary syndrome: a systematic review and meta-analysis. J Cardiovasc Nurs. 2022;80:639–47.

[533] Lincoff AM, Brown-Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N Engl J Med. 2023;389:2221-32.

Previous

3. Recovery and secondary prevention